Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.476-476
/
2010
유도 결합 플라즈마 (ICP)는 축전 결합 플라즈마 (CCP) 보다 상대적으로 높은 밀도의 플라즈마를 발생시킬 수 있다. 또한 구조가 간단하고 기존 스퍼터링 장치의 내부에 추가 설치가 용이하며, 스퍼터된 입자의 이온화, 반응성 가스의 활성화를 위한 2차 플라즈마원으로 적용이 가능하다. 그러나 대면적의 고밀도 플라즈마의 균일도 측정은 고가의 2D probe array등을 사용하여야 한다. 본 연구에서는 간단한 CCD camera를 챔버 내부에 삽입하여 가시광 영역의 적분 강도를 이용해서 플라즈마의 2차원적 균일도를 정성적으로 비교 판단하고 시간에 따른 국부적인 이상 방전을 감시할 수 있도록 내장형 무선 카메라를 사용하였다. 직경 380 mm의 챔버 내에 2 turn ICP antenna를 이용하여 유도 결합 플라즈마를 발생시켰다(Ar 30 sccm, 35 mTorr, 2 MHz, 400 W). 내장형 무선 카메라를 챔버 내부 중앙의 ICP antenna에서 8 cm 아래에 위치시켜 플라즈마를 진공 중에서 촬영하였다. 내장형 무선 카메라를 챔버 내부에 위치하여 촬영한 결과 외부에서 view port로 쉽게 확인할 수 없는 ICP antenna 내부의 고밀도 플라즈마의 불균일도를 평가할 수 있었고, ICP antenna 가장자리에서 중심으로 이동할수록 밝아지는 것을 토대로 중심 영역의 plasma 밀도가 가장 높다는 것을 알 수 있었고, 채도와 명도의 차이를 이용하여 시각적인 플라즈마 균일도를 분석하였으며 이를 플라즈마 모델링 기능이 있는 전산 유체 역학 프로그램인 CFD ACE+를 이용하여 플라즈마 분포를 모델링 및 비교하였다. 또한 인라인 타입의 마그네트론 스퍼터링 시스템에서 기판 캐리어에 무선 카메라를 장착하여 이동하면서 캐리어와 마그네트론 방전 공간의 상대적인 위치에 따른 마그네트론 방전링의 형상 변화도 관찰하였다.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.563-563
/
2013
신업플라즈마에서는 라디컬 밀도와 플라즈마 변수를 독립적으로 제어하기 위해어 펄스파워 소스를 사용하고 있다. 펄스플라즈마에서는 플라즈마 상태가 매우 빨리 변한다. 따라서 고시간 분해능으로 플라즈마를 진단하는 방법이 필요하다. 고전적인 단일 랑뮤어 탐침법을 이용하여 펄스 플라즈마를 진단할 경우 수시간 정도의 매우 오랜 시간이 걸리지만 본 연구에서 제안한 방법을 이용하면 수 마이크로 초의 고시간 분해능을 가지면서 수 초내로 측정이 가능하다. 기본 원리는 부유고조화파를 이용하며 고시간 분해능으로 얻기 위해서는 측정된 전류를 인가한 주파수의 주기 단위로 분할하고, 마이크로 시간 단위로 분할된 데이터를 각각 Fourier Transform 하여 전자온도와 밀도를 얻는다. 이 방법을 이용하여 구한 플라즈마 변수 값들은 랑뮤어 방법으로 구한 것과 비교하여 잘 일치하는 결과를 얻을 수 있었다.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.242-242
/
2011
현재 반도체 및 디스플레이 장비들이 공정 매개변수 및 플라즈마 변수를 독립적으로 제어하기 위하여 전원 주파수를 다양하게 사용된다. 플라즈마의 상태나 에너지 전달 효율은 반도체 및 디스플레이 공정에 중요한 요소이다. 따라서 플라즈마 발생장치의 전원 주파수를 바꾸었을 때의 플라즈마 밀도와 에너지 전달 효율에 관하여 연구하였다. 공정용 유도 결합 플라즈마(ICP)를 발생시키기 위하여 신호 발생기에서 전력 증폭기와 임피던스 정합회로(Matcher)를 거쳐 반응 용기에서 플라즈마를 발생시켰다. 6 mTorr의 압력에서 주파수는 13.56 MHz에서부터 80 MHz까지, 15~60 W의 전력을 인가하였다. 플라즈마의 에너지 효율을 측정은 제작한 로고스키코일(Rogowski Coil)을 이용하여 시스템 전반을 등가회로로 계산하였으며, 플라즈마 밀도는 반응용기 중앙에서 부유 탐침법을 적용하여 도출하였다. 같은 전력 조건에서 주파수가 증가함에 따라 플라즈마 밀도가 증가함을 볼 수 있었다. 그러나 플라즈마 에너지 효율은 주파수가 높아짐에 따라 점점 커지다 작아지는 경향을 볼 수 있었다. 에너지 전달 효율의 변화는 정합회로의 표피효과(Skin effect)에 기인하며 플라즈마 밀도의 변화는 이온의 에너지 손실에 기인한다.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.469-469
/
2010
공정 플라즈마에서 가장 중요한 요소 중 하나는 챔버 내 균일도 제어이다. 챔버 내 플라즈마 상태가 공간적으로 불균일한 경우 과에칭, 미증착 등의 문제가 웨이퍼의 특정 영역에 나타나게 되어 공정 수율이 감소된다. 이 연구에서는 2차원 평면 탐침을 챔버 내에 삽입하여 플라즈마 전자온도, 밀도, 이온 전류량 등의 상태변수를 측정 가능한 방법을 연구하였다. 기존의 2차원 평면 탐침과 달리, 측정 회로와 계산 모듈을 모두 삽입하여 외부의 컨트롤러가 필요 없어 반도체나 디스플레이의 플라즈마 공정의 사이사이에 삽입되어서 플라즈마 상태변수를 측정할 수 있는 장점을 가지고 있다. 본 임베디드 2차원 평면 탐침은 측정회로가 외부와 단절되어 전기적으로 절연되어 있어, 측정 방법으로 이중 탐침법을 응용하였다. 이중탐침에 정현파 전압을 인가하고 이 경우 들어오는 전류의 제 1 고조파와 제 3 고조파를 크기를 측정하는 방법으로 플라즈마 변수 계산이 가능하다. 이 측정 방법은 플라즈마 공정에서 쉽게 관찰할 수 없었던 공간적인 상태변수의 분포를 알 수 있고 플라즈마 균일도 제어에 기여할 수 있을 것이다.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.156-156
/
2013
대기압 저온 플라즈마는 간단한 구조 및 제작, 쉬운 조작성, 낮은 온도 특성, 높은 화학적 반응성과 같은 많은 장점에도 불구하고, 플라즈마의 에너지가 낮아 다양한 산업적 응용에 제약을 받아왔다. 이러한 단점을 극복하기 위해서 대기압에서 저온 플라즈마의 에너지를 높이는 여러 시도가 있었으며, 그 중 가까이 인접해 있는 둘 이상의 플라즈마 젯들의 결합 현상(plasma jet-to-jet coupling)을 이용하여 플라즈마 강도를 높이려는 시도가 보고되었다. 본 연구에서는 플라즈마를 발생시키는 유리관을 서로 모아 벌집모양의 배열을 갖는 플라즈마 젯 어레이 장치를 만들어 플라즈마 젯 사이에 상호결합을 유도하여 강한 플라즈마 발광을 발생시켰다. 플라즈마 젯 어레이 장치 중 가운데 위치한 플라즈마 젯은 대기압 플라즈마 젯의 형태를 구현하는 역할을 하고, 가운데를 둘러싼 주변의 여러 플라즈마 젯들은 중앙의 플라즈마 젯에 많은 하전입자를 제공하여 플라즈마 젯의 발광강도를 높이는 역할을 하는 것을 확인했다. 헬륨기체를 사용한 이 플라즈마 젯은 $100^{\circ}C$ 이하의 온도임에도 불구하고 ITO 유리의 유리면을 식각할 만큼 높은 에너지를 가졌다. 이러한 대기압 저온플라즈마 장치에서 플라즈마의 강도를 더 높이기 위해서는 플라즈마 젯 간 결합이 더 많이 일어나는 것이 중요하므로, 이를 위해 주변의 플라즈마 젯의 개수를 높이는 시도를 하였다. 플라즈마 젯 어레이 소자의 중심에 위치한 유리관의 크기를 크게 하고, 주변부의 유리관의 크기를 상대적으로 작게 하여 벌집형태의 배열보다 더 많은 유리관을 주변부에 위치시킨 후 플라즈마를 발생시키고 전기 광학적 특성을 측정하였다. 그 결과, 실험조건에 따라 가운데 플라즈마 젯에서 3배에서 5배 이상 높은 플라즈마의 발광강도를 얻었으며, 플라즈마 젯도 더 안정적으로 발생하였다. 주변부의 유리관의 개수가 증가하면 더 많은 양의 하전 입자들이 플라즈마 결합 과정에 참여하게 되고 결과적으로 더 큰 플라즈마의 발광강도를 나타내는 것이다. 본 실험은 하전입자의 상호작용에 의해 발생하는 서로 인접한 플라즈마 젯 간의 결합이 대기압 저온 플라즈마 젯의 플라즈마 발광강도를 높이는 좋은 방법임을 보였다. 이러한 플라즈마 젯 간의 결합은 대기압 저온 플라즈마의 에너지를 높일 수 있는 쉽고 간단한 방법이며, 이 방법을 이용하여 대기압 저온 플라즈마를 표면처리, 표면개질은 물론, 식각 및 증착, 나아가서는 의료/바이오 분석 기술 등 다양한 학문적, 산업적 응용에도 적용할 수 있을 것으로 기대한다.
Jo, Tae-Hun;Yun, Myeong-Su;Jo, Lee-Hyeon;Kim, Dong-Hae;Jeon, Bu-Il;Choe, Eun-Ha;Jo, Gwang-Seop;Gwon, Gi-Cheong
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.275-275
/
2012
바이오메디칼 연구에 있어서 최근 플라즈마의 사용이 급격하게 늘어나고 있다. 세포나 세균에 플라즈마를 조사하여 이에 대한 반응성 연구와 의료용 살균기 등 여러 방면에서 필요로 하고 있다. 현재 주로 단일 플라즈마 소스를 이용한 실험이 진행되어가고 있다. 그러나 이러한 방식은 다양한 실험을 하기에는 시간이 다소 많이 걸리는 단점이 있다. 이에 다양하고 좀 더 정확한 연구를 위한 균일하게 방사되는 대기압 멀티 플라즈마 소스가 필요하다. 대기압 멀티플라즈마 소스는 각각 발생하는 플라즈마가 동일한 밀도 및 전자온도를 유지할 수 있도록 하는 것이 쉽지 않다. 이와 같이 상황에 맞는 소스를 제작하는 것도 중요하다. 본 연구에서는 24-well tissue culture testplate에 맞는 4개의 대기압 플라즈마 제트가 발생하는 소스를 목표로 하였다. 균일한 플라즈마가 발생할 수 있도록 시뮬레이션을 통하여 멀티 플라즈마 소스를 개발 및 제작하였다. 이에 대한 플라즈마 분석과 기초실험을 진행하여 재현성 테스트를 하였다.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.359.2-359.2
/
2016
붕소의 높은 융점과 비점으로 인하여 일반적인 합성법으로는 제조가 어려운 붕화금속 나노물질을 효과적으로 합성하기 위하여 열플라즈마의 특성을 전산해석 하였다. RF (Ratio Frequency, 고주파) 열플라즈마 발생기는 일반적인 직류 열플라즈마 발생기와 비교해 볼 때, 전극 침식에 의한 수명 문제나 불순물의 오염 없이 고온의 열플라즈마를 안정적으로 발생시킬 수 있기 때문에 고순도의 나노입자 합성공정에 좋은 조건을 가지고 있다. 그러나 열플라즈마의 고온 부분은 10,000 K 이상의 높은 온도를 가지고 있기 때문에 직접적인 측정으로는 나노입자 합성에 최적의 조건을 찾기가 어렵고, 전산해석을 통하여 여러 변수들에 대한 열플라즈마의 특성을 분석하여야 한다. 해석조건으로 RF 플라즈마의 입력전력은 25 kW로 고정하고 발생기 직경 20~35 mm, 유도코일 감은 수 4~6 회, 첫 번째 코일으로 부터 분말 주입구까지의 길이 10~30 mm, 방전 기체 유량 30~70 L/min에 대한 변수들에 대하여 붕화금속 나노입자 합성에 최적의 조건을 가진 RF 플라즈마의 온도 및 속도분포를 파악하였다. 전산모사 결과 RF 열플라즈마 발생기의 직경 25 mm, 분말주입구 까지의 길이 10 mm, 유도코일 감은 수 6 회, 방전 기체 유량 50 L/min 일 때, 고온영역이 중심부에 넓게 분포하여 붕화금속 나노입자를 합성하는데 최적의 조건이라 파악되었다. 방전 기체 유량 증가에 따라 고온영역의 중심부 분포를 넓게 할 수 있었으나 유량이 증가할수록 플라즈마 속도가 증가하여 붕소를 기화시키기 위한 가열시간이 짧아지므로 방전기체 유량을 조절하여 적절한 속도를 가진 플라즈마를 발생시켜야 한다. 그리고 코일의 감은 수가 증가할수록 10,000 K 이상 고온영역이 출구 쪽으로 확장되어 붕화금속 나노입자를 합성하는데 좋은 조건이 형성되었다. 본 전산해석 결과를 바탕으로 붕화금속 나노입자를 합성하는 RF 플라즈마 발생장치의 설계 및 운전조건을 적용하여 실험과의 비교연구를 통해 붕화금속 나노입자의 합성공정을 최적화 시킬 수 있다.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.191-191
/
2016
대기압 저온 Ar 플라즈마 제트에서 발생되는 플라즈마에 대해 연구하였다. 플라즈마 제트의 본체는 주사기 바늘, 유리관 그리고 테프론 튜브로 구성되어 있다. 바늘의 앞부분은 유리관에 삽입되어 있으며 바늘의 뒷부분은 테프론 튜브와 연결되어 있다. 주사기 바늘에는 수십 kHz의 사인파를 발생시키는 DC-AC 인버터로 수 kV의 고전압을 인가해준다. 기체는 테프론 튜브를 통해 바늘의 안쪽으로 흐른다. 사용 기체는 Ar이며 유량은 3 lpm이다. 주사기 바늘형 전극의 내경은 1.3 mm, 외경은 1.8 mm, 총 길이는 39.0 mm이며 재질은 스테인레스강이다. 유리관의 내경은 2.0 mm, 외경은 2.4 mm, 총 길이는 80.0 mm이다. 자외선-근적외선 분광계를 이용하여 대기압 저온 Ar 플라즈마 제트에서 발생된 플라즈마의 분광 분석을 하였다. 플라즈마 제트에서 발생되는 플라즈마의 휘도는 대략 $10{\sim}30cd/m^2$이다. 플라즈마의 측정 위치, 플라즈마 제트의 입력 전압과 입력 전류, 기체 종류 등의 변수에 따른 분광 실험을 하였으며 이를 통해 얻은 분광 데이터를 일반적인 볼츠만 기울기법에 대입하여 플라즈마의 들뜸 온도를 측정하였다. 또한 Ar 플라즈마 제트의 분광 데이터를 수정된 볼츠만 기울기법에 대입하여 플라즈마의 전자 온도를 측정하였다. 이는 바이오-의료용 플라즈마 및 플라즈마 공정 등의 다양한 응용 분야에서 유용하게 활용할 수 있을 것이다.
본 논문에서는 상압에서 RF파워에 의해 플라즈마 바늘(plasma needle) 에서 발생된 마이크로 플라즈마를 이용한 바이오 실험에 대한 결과를 제시한다. 마이크로 플라즈마는 그 크기가 수 mm에서 수백 마이크로미터 크기의 플라즈마를 지칭하는 단어로써 다양한 전원에 의해 구동된다. 바이오 응용을 위한 저온 플라즈마는 세포 활동을 저해하지 않도록 온도가 적절히 제어되어져야만 한다. 본 논문에서는 플라즈마 온도를 40도 이하로 조절하도록 외부 인가 파워를 조절하였다. 플라즈마의 특성을 알기 위해서 기초적인 가스 스펙트럼에 대한 조사도 수행하여 아르곤 (Ar) 과 헬륨 (He) 의 결과를 저압의 결과와 비교하였다. 또한 작은 크기 때문에 플라즈마의 관찰이 용이하지 않으므로 모델링을 통한 시뮬레이션으로 플라즈마 거동 및 분포를 계산하였다. 시뮬레이션을 통하여 플라즈마에 대한 정보 및 향후 시스템 개선에 사용할 수 있다. 마이크로 플라즈마를 이용하여 수행한 기초적인 바이오 실험의 예로써 흑색종 (피부암세포, meianoma)에 대한 플라즈마 및 전기장의 효과를 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.