Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.585-585
/
2013
유도 결합 플라즈마는 비교적 간단한 방전 구조와 고밀도 플라즈마 생성에 유리하기 때문에 산업 플라즈마 공정 장비로 널리 사용되고 있으며, 안테나에 의한 전력 전달 특성 및 방전 특성이 공정 결과에 큰 영향을 주게 된다. 이러한 유도 결합 플라즈마는 변압기 모델을 통하여 전력 전달 특성을 해석할 수 있으며, 안테나의 감은 수가 증가할수록 플라즈마로의 전력 전달 효율 및 플라즈마 밀도 상승이 기대된다. 반면에, 안테나 양단 또는 챔버 벽면과의 원치 않는 용량성 결합에 의하여, 실제로 안테나 감은 수가 증가함에 따라서 플라즈마로의 전력 전달 효율 및 방전 특성이 향상되지 않을 수도 있다. 본 연구는 이러한 안테나 감은 수 효과에 의한 전력 전달 효율 및 플라즈마 변수 변화에 대한 내용을 다루고 있으며, 플라즈마 변수 진단을 통하여 방전 특성을 연구하였다. 용량성결합을 최소화하기 위하여, 평형 전력 안테나를 사용하여 실험을 진행하였으며, 평형 전력이 인가되지 않은 안테나 구조에서의 안테나 감은 수에 따른 방전 특성과 결과를 비교하였다.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.91.1-91.1
/
2016
플라즈마 전기적인 진단 방법이라 함은 플라즈마에 전기장을 인가하고 이로 인해 도출되는 전류와 그 위상차를 구하여 플라즈마의 임피던스를 얻는 방법을 통칭한다. 이러한 방법은 임피던스라는 raw data에서 출발하지만 플라즈마와 전기장의 상호작용에 따라 다양한 플라즈마 진단 모델이 적용될 수 있으며, 이러한 모델을 통해 다양한 플라즈마 변수 (플라즈마 밀도, 온도, 전위 등등)들을 도출할 수 있는 것이 특징이라고 할 수 있다. 본 발표에서는 진단에 사용되는 주파수와 진단기의 형상에 따라 달라지는 외부 전기장와 플라즈마의 전기적인 상호작용을 살펴보고, 어떻게 플라즈마 전기적 진단기술이 성립되는지를 다양한 전기적 진단 기술을 소개하면서 설명하고자 한다.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.479-479
/
2010
현재까지 대부분의 반도체 공정이나 LCD 공정에 사용되는 플라즈마는 진공 플라즈마이다. 이는 대기압에서의 플라즈마 발생의 어려움, 공정 품질 등이 원인이기도 하다. 그러나 진공 장비의 고가 및 진공 시스템 부피의 거대화 등의 많은 단점이 있다. 현재의 진공 플라즈마공정을 대기압 플라즈마 공정으로 대체 할 수 있다면 많은 경제적인 이득을 얻을 수 있을 것이다. 본 연구실에서 개발한 직류아크 플라즈마트론은 기존의 대기압 플라즈마 장치에 비해 수명이 길고, 광학적으로 깨끗하고, 활성도가 높은 플라즈마를 얻을 수 있는 장점이 있다. 직류아크 플라즈마트론의 식각공정에 적용을 위해 플라즈마트론을 저 진공 및 대기압에서 적용하여 실험하였다. 식각 가스로는 SF6를 사용하였고, Ar과 O2를 혼합하여 플라즈마트론의 음극 보호 및 식각률을 높이도록 하였다. 실험결과 저진공 플라즈마의 경우, 플라즈마 영역이 20 cm를 넘는 반면, 대기압에서는 플라즈마 유효 길이가 약 20 mm로 매우 짧았다. 하지만 저 진공(~ 3 mbar)에 적용하여 최대 $60\;{\mu}m/min$의 식각률을 보였고, 대기압 플라즈마의 경우 $300\;{\mu}m/min$ 넘는 식각률을 달성하였다.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.29-29
/
2011
플라즈마 진단법은 플라즈마를 분석 및 이해하는데 매우 중요하다. 최근 플라즈마 쉬스의 비선형성을 이용한 고조화파 분석법이 개발되었다. 플라즈마 쉬스에 정현 전압을 인가하면, 쉬스의 비선형성 때문에 고조화 전류들이 발생하게 되는데, 이 고조파 전류들을 분석하면 플라즈마밀도와 전자 온도를 측정할 수 있다. 이 방법은 실시간 또는 고속으로 플라즈마 측정이 가능하고, 부도체 탐침을 사용할 수 있기 때문에, 식각 또는 증착 플라즈마에서는 측정이 가능한 장점이 있다. 본 발표에서는 진단법의 원리와 공정 플라즈마 장비에서 진단 결과들을 소개하고자 한다.
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.91.2-91.2
/
2016
반도체 및 디스플레이 등과 같은 전자산업분야에 플라즈마를 이용한 생산공정이 폭넓게 활용됨에 따라서 공정 결과를 예측하고 조절할 수 있는 플라즈마 변수 측정 및 진단기술의 중요성은 더욱 증가되고 있다. 플라즈마 진단을 위해 가장 많이 사용되고 있는 량뮤어 탐침(Langmuir Probe)은 수십 볼트(V)의 전압을 탐침에 인가하여 들어오는 전류(I)를 측정한 I-V curve의 해석을 바탕으로 플라즈마 변수들(전자밀도, 전자온도, 플라즈마 전위, ${\cdots}$)을 측정하는 방법으로 탐침에 인가한 전압으로 인하여 플라즈마가 영향을 받고 이로인하여 공정 결과에 변화를 줄 수 있다. 또한, 증착공정과 같이 공정과정 중에 탐침의 증착으로 인해 탐침으로 들어와야하는 전자 및 이온의 양이 감소하여 측정에 오차가 발생할 수 있어 공정 플라즈마 진단에 적합하지 않다. 따라서 공정 플라즈마의 정확한 측정을 위해서는 플라즈마에 대한 영향을 최소화하고 증착으로 인하여 탐침이 오염 되는 환경에서도 플라즈마 변수를 정확히 측정할 수 있는 진단 장치가 요구된다. 마이크로웨이브를 이용한 진단장치들은 1 mW 이하의 매우 작은 파워를 사용하기 때문에 플라즈마에 영향을 최소화하여 보다 정확한 플라즈마 진단이 가능하다. 또, 유전체 투과특성이 있는 마이크로웨이브를 이용하기 때문에 탐침이 유전체로 증착되었다 하더라도 측정에는 문제가 없어 공정 플라즈마 진단에 용이하다. 이런 장점들로 인하여 헤어핀 탐침(Hairpin probe), 컷오프 탐침(cutoff probe), 임피던스 탐침(Impedance probe) 등과 같이 마이크로웨이브를 이용하여 다양한 형태의 진단 장치들이 개발되었다. 본 발표에서는 마이크로웨이브를 이용한 다양한 형태의 진단 장치들을 소개하고 각각이 가지는 장단점을 정리하여 각 진단장치들이 측정이 적합한 영역을 소개할 예정이다.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.482-482
/
2012
대기압 플라즈마 소스는 미생물을 살균하는 효과를 가지고 있으나 그 메커니즘에 대해서는 여전히 많은 연구가 필요한 실정이다. 우리는 본 연구에서 메커니즘 규명을 위한 시작단계로 플라즈마에 대한 미생물의 반응을 생물학적 및 물리적 분석을 통해 보고자 하였다. 연구에 사용한 미생물은 yeast인 Saccharomyces cerevisiae 이며 Ar Gas 플라즈마를 사용하였다. Yeast에 일정한 시간 동안 플라즈마를 조사한 후 세포의 생존, 모양 변화 관찰 및 DNA에 대한 영향이 분석되었고 r-FIB 장비를 이용하여 세포표면의 이차전자 방출계수를 측정하였다. 플라즈마 조사 시간에 따라 Yeast active cell의 수가 감소하며, water에 넣고 조사할때에는 YPD media에 넣고 조사한 것에 비해 급격히 감소함을 볼 수 있다. 셀의 모양 관찰 결과도 water에 넣고 조사할 때, YPD media보다 더 찌그러듬을 볼 수 있다. 플라즈마 조사량에 따라서 Water의 PH 값은 YPD에 비해 급격히 낮아짐을 보인다. pH의 값을 달리하고 SNP와 H2O2가 첨가된 water에 Yeast를 배양시킬 때, pH의 값이 낮아질수록 yeast의 생존도 감소함을 볼 수 있다. 그리고 DNA gel electrophoresis를 통해 플라즈마 처리를 하게되면 Yeast의 DNA 양이 감소하는 것을 관찰할 수 있다. 또한 플라즈마 처리를 3분 하였을 때의 Yeast 세포막으로부터 방출되는 이차전자방출계수는 다른 처리시간에 대한 값에 비하여 확연히 증가하는 것을 볼 수 있다. 이들 사실로부터 플라즈마의 효과로 인해 외부의 전자를 흡수 및 차단할 수 있는 기능을 갖고 있는 Yeast 세포막의 구조가 변형되어 손상되었음을 의미한다.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.297-297
/
2010
KSTAR 토카막의 두번째 실험 캠페인 동안 고속파 전자가열 (FWEH)을 위한 ICRF 고주파입사 실험을 실시하였다. 토로이달 자기장은 2 T, 플라즈마 전류는 200-300 kA, 주반경은 1.8 m, 부반경은 0.5 m의 원형 플라즈마가 가열 대상이 되었으며, 네개의 ICRF 안테나 전류띠 가운데 중심부의 두개의 전류띠를 최대 300 kW로 구동하기 위한 운전 주파수는 44.2 MHz가 선택 되었다. 이 주파수는 플라즈마의 모든 영역에서 이온 사이클로트론 공명을 일으키지 않으므로 플라즈마에 흡수되는 대부분의 출력은 전자에게 전달될 것으로 기대되었다. 낮은 고주파-플라즈마 결합으로 인하여 전송선의 최대 고주파 전압이 허용치를 초과하기 때문에 비교적 낮은 최대 출력만이 허용 되었으나, ECE에 의해 관측된 전자의 온도는 국지적으로 최대 150 % 까지 증가하는 것을 확인 할 수 있었다. 낮은 고주파-플라즈마 결합의 첫번째 원인은 FWEH의 효율이 이온을 가열할 때 보다 상대적으로 낮기 때문이다. 플라즈마 내에 이온 사이클로트론 공명층이 형성되면 높은 효율로 고주파를 입사 할 수 있다는 것은 잘 알려진 사실이다. 또다른 원인은 D 형상의 플라즈마에 맞도록 만들어진 안테나와, 원형 플라즈마간의 부조화로 인하여 고속파 차단층이 (Fast Wave Cutt-off Layer) 평균적으로 넓게 형성되기 때문이다. 플라즈마 외곽에 반드시 존재하는 낮은 플라즈마 밀도의 고속파 차단층 내부에서, 중심부로 향하는 고주파의 진폭은 지수함수로 감쇠하므로 가능하면 플라즈마 밀도를 높여 차단층 자체의 폭을 줄이거나, 안테나 전류띠를 플라즈마에 바짝 접근시켜야만 한다. 고주파 진단 장치로는 송출기의 출력과 반사파 측정 장치, 공명루프의 전압 측정 장치가 있는데, 이것들을 이용하여 안테나에 전달되는 출력 및 고주파-플라즈마 결합 효율을 나타내는 플라즈마에 대한 고주파 부하 저항을 구할 수 있다. 측정 결과, 부하 저항의 최소값은 진공시 또는 ICRF만의 방전시의 값 0.25 Ohm 보다 큰 0.5 Ohm을 나타냈으며, 최대값은 플라즈마의 상태에 따라 1 Ohm에서 2 Ohm 사이에서 매우 빠르게 요동하는 것을 확인했다. Mm 파 반사계의 측정에 의하면 플라즈마 언저리의 위치가 약 3 cm 정도의 크기로 요동하는 것으로 나타났는데, 부하 저항과 언저리 위치의 파형이 정확하게 일치하지 않지만 유사한 경향성을 가진 것으로 보인다. 따라서 플라즈마 언저리 위치의 제어를 통하여 가열 효율을 높게 유지할 수 있음을 알 수 있다. 본 발표에서는 실험의 소개와 함께 부하 저항의 관점에서 가열 효율을 높일 방안을 토론하도록 한다.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.493-493
/
2012
평행평판 축전 결합 플라즈마는 증착이나 식각 등 많은 공정장비에서 사용된다. 이때 구동주파수를 높여주거나 리액터의 크기를 증가시킬 경우, 플라즈마 밀도가 불균일해진다. 플라즈마 밀도는 플라즈마 내 전기장 분포의 균일도와 관련이 있는 것으로 전기장 분포를 균일하게 만드는 것은 매우 중요하다. 이전 연구에서는 충돌 주파수(공정 압력)가 전기장의 분포에 미치는 영향에 대해 발표하였다 [1]. 본 연구에서는 구동 주파수, 충돌 주파수(공정 압력), 플라즈마 주파수(플라즈마 밀도)가 전기장 분포에 미치는 영향을 알아보았고, 이들의 상관관계를 분석하였다. 플라즈마 주파수(플라즈마 밀도)와 충돌 주파수(공정 압력)는 전기장 분포의 균일도에 영향을 주는 변수이지만 이 둘은 반대 영향을 미쳤다. 따라서 두 주파수가 전기장 분포에 미치는 영향이 균형을 이룰 때 균일한 전기장 분포를 얻을 수 있었다. 이 때 구동 주파수가 증가할수록 균일하게 하는 두 주파수의 영역이 줄어들어 높은 구동 주파수에서는 전기장 분포를 균일하게 하기 어려웠다. 이러한 관계를 이용하여 일정한 구동 주파수와 플라즈마 주파수에서 전기장 분포의 균일도를 10% 이내로 하기 위해 충돌 주파수를 결정할 수 있는 방정식을 구하고, 충돌 주파수와 플라즈마 주파수, 그리고 구동 주파수가 전기장 분포를 균일하게 하는 이들의 관계를 살펴 보았다.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.46-46
/
2010
최근 상압 저온 플라즈마에서 발생되는 UV와 화학적 활성종들을 이용한 체내 조직 분해 처리, 피부 및 혈관 표면 처리, 대기 및 액체 정화 처리 등의 생체 의료적 응용이 활발하게 연구되고 있다. 이러한 플라즈마에서는 처리 대상 외의 생체 조직의 손상을 최소화 할 수 있는 기술이 필요하며, 이 조건이 확보된 상태에서 처리 목표 대상에 따른 플라즈마 특성, 즉 선택적 생성종 제어와 플라즈마 온도를 안정적으로 관리할 수 있어야 한다. 인체 내부 조직에 대하여 유효 활성종 등의 직접적인 작용이 필요할 경우 밀리미터 크기 이하의 미세침습성 플라즈마를 활용하게 된다. 이 경우 방전 특성을 간접적으로만 관측 가능하여 주변 조직과 플라즈마 간의 상호 영향 등이 고려되어야 하므로 직접적인 관측이 가능한 인체 외부에서 발생된 플라즈마에 비해서 더욱 정교한 제어가 필요하다. 본 연구에서는 미세 침습성 플라즈마의 발생 메커니즘 및 특성 분석을 수행하여 척추 디스크 탈출 치료 시술에 활용하기 위한 연구를 수행하였다. 처리 대상 조직으로의 접근 시 주변 조직의 손상을 막기 위하여 수 밀리미터 이하의 미세한 전극을 이용하였으며 전기 전도성을 띄는 인체 내부에서 절연공간의 확보를 위해 전극 표면에서 기포를 발생시켜 플라즈마 방전이 가능한 조건을 확보하였다. 또한 플라즈마 방전이 중단되거나 혹은 갑작스런 열 플라즈마로의 천이로 인해 생체에 심각한 열 손상을 초래하는 현상을 방지하기 위하여 발생 플라즈마와 주변 디스크간의 상호 영향을 통한 플라즈마의 동적인 특성 변화 및 안정적인 플라즈마 발생을 위한 조건을 도출하였다. 이를 실제 임상 실험에 활용한 결과를 소개하고 아울러 차세대 의료용 플라즈마 발생 장치 개발을 위한 플라즈마 학계의 관심을 이끌어 보고자 한다.
An, Chan-Yong;Gu, Dong-Jin;Kim, Seon-Ho;Wang, Seon-Jeong;Kim, Seong-Gyu;Kim, Chang-Bae
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.319-319
/
2011
KSTAR ICRF 안테나 장치에서 외곽 플라즈마 밀도분포는 고주파 출력이 내부로 전달되는 효율을 위해 중요하게 다루어 진다. 따라서 1.5T의 자기장에서 플라즈마에 간섭없이 0~$10^{14}/cm^3$의 외곽 플라즈마 밀도분포를 측정할 수 있는 Q-band 대역의 x-mode 반사계가 필요 하였다. 헬리콘 플라즈마는 $10^{13}/cm^3$ 이상의 높은 플라즈마 밀도를 수 kW 이내의 rf power와, 수 MHz 대역의 고주파원을 사용하여 높은 에너지 효율로 얻을 수 있다. 이때 높은 플라즈마 밀도는 외곽 플라즈마 밀도 와 비슷하여 제작한 반사계를 테스트 할 수 있다. 본 연구에서는 x-mode microwave 반사계를 제작하고, 1kW rf power와 10MHz 고주파원으로 헬리콘 플라즈마를 생성하여 정전 탐침으로 진단하였고, 반사계의 Q-band대역의 주파수를 가변 하여 반사되어 나오는 마이크로파의 beat 주파수를 통해 밀도 분포를 얻어서 정전탐침과 비교 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.