• Title/Summary/Keyword: 플라이휠 에너지 저장장치

Search Result 74, Processing Time 0.017 seconds

Experimental Study on the Dynamic Behavior of a 500Wh Flywheel Energy Storage Device (500Wh급 플라이휠 에너지 저장장치 회전체계 동적 거동의 실험적 고찰)

  • 김영철;경진호;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.36-42
    • /
    • 1997
  • A prototype of 500Wh class flywheel energy storage device was designed and manufactured to check the previously predicted system performance. The system was intentionally designed to show rigid body behavior up to the maximum operating speed of 60000Tpm and to have its 2nd rigid critical mode, of which nodal point lies on the flywheel center of mass, around 4000 to 6000rpm with radial magnetic bearing stiffness of l.e+6 N/m. Numerous experiments an the system behavior showed that the PM axial bearing, designed utilizing a commercial code, acts as resonably as predicted and, most importantly, the system becomes stable after the 2nd critical speed. The EM radial bearing, however, was found out to have orthotropic property with much less radial stiffness values than expected, so that it was observed that the 2nd forward and backward critical modes were excited at 310 and 590rpm respectively with larger vibration amplitudes. Thus, in order to improve the system dynamic behavior, the EM radial bearing is currently being re designed so as to get bigger stiffness and, in turn, smoother operation of the system.

  • PDF

Fabrication arid Performance Tests of Flywheel Energy Storage System using High Tc Superconducting Bearing (고온초전도체 베어링을 사용하는 에너지 저장용 플라이휠 장치의 제작 및 성능 평가)

  • Lee, Ho-Jin;Kim, Ki-Baik;Koh, Chang-Seop;Lee, Soo-Hoon;Hong, Gye-Won
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.310-314
    • /
    • 1999
  • A prototype of Flywheel Energy Storage System with high Tc superconducting bearings was fabricated and tested to verify its applicability for the energy industry. The moment of inertia of assembled wheel with rotor magnets is about 1.072${\times}$10$^{-1}$ Kg-m$^2$. The wheel was designed to withstand its integrity up to the rotation speed of 20,000 rpm. YBCO bulk superconductors prepared by seed growth method were used as bearing to levitate and stabilize the rotating wheel. High speed rotation of the flywheel without mechanical contact was achieved by using specially designed Halbach type motor. The flywheel system showed very high stability during test operation performed up to the speed of about 10,000rpm. The energy loss measured by free decay test performed between 9,300 rpm and 7,000 rpm was calculated as about 45 W.

  • PDF

High Speed Operating Test of a 300Wh Flywheel Energy Storage System Using Superconductor Bearings (초전도베어링을 이용한 300 Wh급 플라이휠 에너지저장장치의 고속운전시험)

  • 김영철;최상규;성태현;이준성;한영희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.514-520
    • /
    • 2001
  • A 300Wh class flywheel energy storage system using high Tc superconductor bearings(HTC SFES) is being developed by KIMM and KEPRI. HTC SFES consists of a flywheel rotor, superconductor bearings, a motor/generator and its controller, touch-down bearings, vacuum chamber, etc. Stiffness and damping values of superconductor bearings were experimentally estimated to be 67,700N/m and 29Ns/m respectively. The present HTC SFES was designed to have maximum operating speed of 33000 rpm, which is far above 2 rigid body mode critical speeds of 645rpm and 1,275rpm. Leaf-spring type touch-down bearing were utilized to have the system pass safely through the system critical speeds. It has been experimentally verified that the system can run stably up to 28,000 rpm so that HTC SFES is now expected to reach up to its maximum design speed of 33,000rpm without any difficulties. The Halbach array motor & generator has also been proven its effectiveness on transferring electrical energy to a rotaing composite flywheel in kinetic form.

  • PDF

Development of a Composite Rotor for Flywheel Energy Storage System (플라이휠 에너지 저장 장치용 복합재 로터 개발)

  • Kim, Myung-Hun;Han, Hun-Hee;Kim, Jae-Hyuk;Kim, Seong-Jong;Ha, Seong-Gyu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.169-172
    • /
    • 2005
  • A flywheel system is an electromechanical energy storage device that stores energy by rotating a rotor. The rotating part, supported by magnetic bearings, consists of the metallic shaft, composite rims of fiber-reinforced materials, and a hub that connects the rotor to the shaft. The delamination in the fiber wound composite rotor often lowered the performance of the flywheel energy storage system. In this work, an advanced hybrid composite rotor with a split hub was designed to both overcome the delamination problem in composite rim and prevent separation between composite rim and metallic shaft within all range of rotational speed. It was analyzed using a three-dimensional finite clement method. In order to demonstrate the predominant perfom1ance of the hybrid composite rotor with a split hub, a high spin test was performed up to 40,000 rpm. Four radial strains and another four circumferential strains were measured using a wireless telemetry system. These measured strains were in excellent agreement with the FE analysis. Most importantly, the radial strains were reduced using the hybrid composite rotor with a split hub, and all of them were compressive. As a conclusion, a compressive pressure on the inner surface of the proposed flywheel rotor was achieved, and it can lower the radial stresses within the composite rotor, enhancing the performance of the flywheel rotor.

  • PDF