• Title/Summary/Keyword: 프탈레이트 화합물

Search Result 12, Processing Time 0.014 seconds

Study on the methods of risk assessment of human exposure by using of PVC flooring (PVC 바닥재 인체 노출에 따른 위해성 평가 연구)

  • Kim, Woo Il;Cho, Yoon A;Kim, Min Sun;Lee, Ji Youmg;Kang, Young Yeul;Shin, Sun Kyoung;Jeong, Seong Kyoung;Yeon, Jin Mo
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.261-268
    • /
    • 2014
  • In advanced countries, a variety of consumer exposure assessment models including CONSEXPO, are developed to manage risks of consumer products containing hazardous materials. The models are used to assess the risks of exposure to hazardous chemicals in consumer products, which serves as a foundation for regulation standards. In this study, exposure assessment models applicable for various scenarios were reviewed and a proper model was applied for the selected products and risk assessment was conducted at each stage to establish a risk assessment procedure for different types of products. Based on the exposure scenario, exposure factor was selected and according to the algorithm produced based on CONSEXPO exposure model, some level of phthalates were detected from some types of PVC flooring. However, a correlation between phthalate content and migration rate showed r-square 0.0065, little correlation, which is inadequate for estimating standard value. For this reason, it seems valid that the current standard be in place. Additionally, any new standard was not suggested as VOCs were not found harmful to human health, allowing the existing standard to be continuously applied. No migration rate was found for heavy metals and risk assessment was not performed accordingly. In this aspect, it is presumed that hazards to health through dermal exposure would be very little.

Changes of the surface hardness and the light transmittance of PET film by ion implantations (이온 주입에 의한 PET막의 표면경도변화 및 광 투과도 변화)

  • 박재원;이재형;이재상;장동욱;최병호;한준희
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.241-246
    • /
    • 2001
  • Single or dual ion implantations were performed onto the transparent polyethylene terephthalate(PET) sheet, and the surface hardness and the light transmittance in the visual-UV range were examined. Nanoindentation showed that the surface hardness was the highest at about 50 nm depth from the surface and was increased by about 3 times when nitrogen ions were implanted with energy and dose of 90 keV and $1\times10^{15}\textrm{/cm}^2$ respectively. When dual ions such as He+N and N+C ions were implanted into PET, the hardness was increased even more than the case only N ions were implanted. Especially, when PET were implanted with N+C dual ions, the surface hardness of PET increased 5 times more as compared to when implanted with N ions alone. The light at the 550 nm wavelength(visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet. implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays. It can be considered that the increase in the hardness of polymeric materials is attributed to not only cross linking but also forming hard inclusions such as hard C-N compounds, as evidenced by the formation of the highest hardness when both N and C ions are implanted onto PET.

  • PDF