• Title/Summary/Keyword: 프리스트레스트 보

Search Result 101, Processing Time 0.023 seconds

Estimation for Equivalent Flexural Stiffness of Innovative Prestressed Support(IPS) Wale (혁신적 프리스트레스트 가시설(IPS)의 띠장에 대한 등가 휨강성의 산정)

  • Kim, Sung Bo;Kim, Hun Kyom;Heo, In Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2009
  • The flexural-stiffness formula of the wale for the innovative prestressed support (IPS) system was precisely derived, and the equivalent beam stiffness was introduced for application in the actual design of the IPS wale. The cable tension forces of the IPS wale were calculated in both cases, and the axial-deformation effects were included and ignored, respectively. The central displacements of the 1-post, 2-post, 3-post, and 4-post IPS wales were calculated based on the principle of virtual work. The effects of the IPS wale length and cable inclination angle were also investigated using the derived central displacements. The simplified equivalent flexural stiffness of the IPS wale is presented herein for design purposes, and the validity of the proposed design formula was verified through its comparison with the FE and analysis solutions.

Strain-Based Shear Strength Model for Prestressed Concrete Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-200
    • /
    • 2008
  • An analytical model for predicting the shear strength of prestressed concrete beams was developed, applying the previously proposed strain-based shear strength model. In flexure-compression member without shear reinforcement, compression zone of intact concrete primarily resist to the shear force rather than tension zone. The shear capacity of concrete at the compression zone was defined based on the material failure criteria. The shear capacity of the compression zone was evaluated along the inclined failure surface considering interaction with the normal stress. Since the distribution of normal stress varies due to the flexural deformation of member, the shear capacity was defined as a function of the flexural deformation. Finally, the shear strength was determined at the intersection of the shear capacity curve and the shear demand curve. As a result of the comparisons to prior test data, the proposed model accurately predicted the shear strength of specimens.

  • PDF

Evaluation of Flexural Behavior of Prestressed Composite Beams with Corrugated Webs (파형웨브 프리스트레스트 합성보의 휨거동 평가)

  • Oh, Jae-Yuel;Lee, Deuck-Hang;Kim, Kang-Su;Kang, Hyun;Lee, Sofia;Bang, Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.39-40
    • /
    • 2010
  • The demands for longer span and reduction of story height have greatly increased as building structures become much larger and higher in recent years. Although the development of flexural members for reducing story height or making long span has been studied by many researchers and engineers, there is still a lack of efficient systems that meet these two demands simultaneously. This study aimed at developing a new composite beam system suitable for long span and reduction of story height, and proposed a prestressed composite beam with corrugated web. It has great resistance against non-symmetric construction load due to its strong out-of-plane shear strength with relatively small member height as well as good constructability and economic efficiency by removing/minimizing form work. The corrugated webs also make accordion effect introducing larger effective prestressing force to top and bottom flanges, which causes larger upward camber reducing the member deflection. Five full-scale specimens with key test parameters, which are web sectional shapes and number of drape points, were tested to understand their flexural behavior and to verify the performance of the proposed method. The experimental test results showed that the proposed prestressed composite beam had greater flexural strength and stiffness than the ordinary non-prestressed composite beam.

  • PDF

Flexural Behaviors of PSC Composite Girders in Negative Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 부모멘트 구간 거동)

  • Kang, Byeong-Su;Ju, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.169-176
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the negative moment regions are investigated based on the experimental observations recently performed on two of 3.6m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one and three-dimensional nonlinear finite element analysis, and section analysis method.

Flexural Behaviors of PSC Composite Girders in Positive Moment Regions (콘크리트 충전 강관을 갖는 프리스트레스트 합성거더의 정모멘트 구간 거동)

  • Kang, Byeong-Su;Sung, Won-Jin;Chang, Young-Kil;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.313-320
    • /
    • 2006
  • Prestressed composite girder with concrete infilled steel tubes(PSC-CFT girder) is new type of bridge girder which enhances the resisting capacities due to the double composite action of PSC composite girder and concrete infilled tube. The flexural behaviors of PSC-CFT girder in the positive moment regions are investigated based on the experimental observations recently performed on two of 4.4m long specimens. The mechanical and structural roles and failure mechanism of the composite action are discussed through comparing the test results with those numerically predicted by the three methods of one- and three-dimensional nonlinear finite element analyses, and section analysis method.

Performance Evaluation of Structure Strengthening Using Sprayed FRP Technique (분사식 FRP공법을 이용한 구조물 보강 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.126-136
    • /
    • 2009
  • The sprayed FRP strengthening technique is combining the Glass fiber and Polyester resin in open air and spraying randomly at concrete's surface with high-speed compressed air. Then it strengthens the structures with a new technique evaluated the structural performance. We applied it to concrete beam and tested for flexural strength, depended on Korea Standard(KS F 2408). Then based on the result of flexural strength, the properties were proposed that applying to structures. Based on the experiment, we have evaluated structural performance by the experiment. 1/5 scale prestressed concrete I-beam were made by Korean Highway's typical drawing in 1993. With these test results, 49.8% increased in flexural strength, improvement of the behavior of serviceability state, and strengthening was surely effective for controlling deflection and crack of structure. Consequently, it can be summarized that Sprayed FRP technique has prospect to improve the performance of structure.

A Study for Safety Evaluation of the Prestressed Hybrid Beam with T-shape Steel Member which was Developed to Build Large Span Educational Facilities (대공간 교육시설 축조를 위하여 개발된 T형 강재를 이용한 프리스트레스트 합성보의 안전성 평가를 위한 연구)

  • Lee, Kyoung-Hun;Kim, Tae-Hui
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.9 no.1
    • /
    • pp.32-40
    • /
    • 2010
  • The purpose of this study was to evaluate structural safety and economic efficiency of prestressed hybrid beam using T-shape steel member which was developed to build large span educational facilities. Hybrid beam specimens were manufactured with 16.0m long and load was uniformly distributed by 12.0kN steel hexahedrons. In this study, honeycomb beam design process was introduced to T-shape section steel beam design. Vibration condition of specimens were analyzed by Korea Building Code 2009 and AISC Steel Design Guide Series-11. As a result, the prestressed hybrid beam with T-shape steel member has about 10.4% of cost reduction effect.

Estimation of Velocities of Acoustic Signals and Source Locations in PSC Beam by Acoustic Emission (AE기법을 이용한 PSC보의 음파속도와 음원위치 산정방법)

  • Youn, Seok-Goo;Lee, Changno;Kim, Eun-Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.917-925
    • /
    • 2006
  • Experimental tests were performed to estimate velocities of the acoustic signals through prestressed concrete beam and source locations using acoustic emission (AE) techniques. Seven AE sensors are mounted on the surface of 5m length test beam with equal spacing and using Schmidt Hammer AE events are made at 18 locations. The velocities of AE signals are estimated using the time differences of arrival times and the distances between the source locations and the AE sensor locations. In addition, using the Least Square Method, the AE source locations are re-evaluated reversely using both of the arrival times and the velocities of AE signals. Test results show the average velocity of the AE signals is about 4,000 m/sec and the velocity decreased with the increase of the distance from source locations to AE sensors due to the effect of attenuation. Based on the estimation of the source locations, it is observed that the errors of source locations are decreased when the velocities of each AE sensor are used rather than the average velocity.

An Experimental Study on Uniaxial Compressive Behavior of RC Circular Columns Laterally Confined with Prestressing Aramid Fiber Strap (아라미드 스트랩으로 프리스트레싱 횡구속된 RC 원형기둥의 일축압축거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Lee, Jae-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.159-168
    • /
    • 2009
  • In this study, strength, stiffness and confinement effect with stress-strain and stress-volumetric strain curves for improved uniaxial compressive behavior of RC circular columns laterally confined with prestressing aramid fiber strap were experimentally investigated. The test variables were the specimens with or without axial reinforcing bar and the number and spacing of strap, prestressing level, the types of reinforcing fiber (CFS, GFS). As a result, the failure type of the columns was very stable and strength increase rate was about 73% comparison with the general RC columns. Moreover, the strain increase rate is very small and the axial displacement confinement effect was very effective compared with existry methods (CFS, GFS), the initial and final lateral confinement effect was excellent.

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.