기존의 관계 추출 태스크에서의 많은 연구들은 사전학습 언어모델을 파인튜닝하여 뛰어난 성능을 달성해왔다. 하지만, 파인튜닝은 사전학습 시의 학습 기법과의 간극으로 인해 일반화 능력을 저해한다. 본 연구는 다운스트림 태스크를 사전학습의 Masked Language Modeling (MLM) 기법을 통해 해결하는 프롬프트 기반의 학습 기법을 활용하여, 특정 한국어 도메인에서의 관계 추출을 위한 프롬프트 기반 파인튜닝 방법론을 제안한다. 실험의 경우, 도메인의 특성이 뚜렷한 전통문화유산 말뭉치를 대상으로 실험을 진행하여 본 방법론의 도메인 적응력을 보이며, 메타 정보 즉, 개체 유형 및 관계 유형의 의미론적 정보를 일종의 지식 정보로 활용하여 프롬프트 기반 지식 주입의 효과성을 검증한다. 프롬프트에의 메타 정보의 주입과 함께 프롬프트 기반으로 파인튜닝된 모델은 오직 MLM 기법만을 이용하여 태스크를 수행하여 기존 파인튜닝 방법론 대비 파라미터 수가 적음에도, 성능 면에서 대부분 소폭 상승하는 경향을 보여줌으로써 그 효과성 및 효율성을 보인다.
속성 기반 감정 분석은 텍스트 내에서 감정과 해당 감정이 특정 속성, 예를 들어 제품의 특성이나 서비스의 특징에 어떻게 연결되는지를 분석하는 태스크이다. 본 논문에서는 속성 기반 감정 분석 데이터를 사용한 다중 작업-토큰 레이블링 문제에 프롬프트 튜닝 기법을 적용하기 위한 포괄적인 방법론을 소개한다. 이러한 방법론에는 토큰 레이블링 문제를 시퀀스 레이블링 문제로 일반화하기 위한 감정 표현 영역 검출 파이프라인이 포함된다. 또한 분리된 시퀀스들을 속성과 감정에 대해 분류 하기 위한 템플릿을 선정하고, 데이터셋 특성에 맞는 레이블 워드를 확장하는 방법을 제안함으써 모델의 성능을 최적화한다. 최종적으로, 퓨샷 세팅에서의 속성 기반 감정 분석 태스크에 대한 몇 가지 실험 결과와 분석을 제공한다. 구축된 데이터와 베이스라인 모델은 AIHUB(www.aihub.or.kr)에 공개되어 있다.
최근 거대 언어 모델의 발전으로 프로그램 합성 분야에서 활용되고 있는 코드 생성 언어 모델의 보안적 측면에 대한 중요성이 부각되고 있다. 그러나, 이를 위해 모델 전체를 재학습하기에는 많은 자원과 시간이 소모된다. 따라서, 본 연구에서는 효율적인 미세조정 방식 중 하나인 프롬프트 튜닝으로 코드 생성 언어 모델이 안전한 코드를 생성할 확률을 높이는 방법을 탐구한다. 또한 이에 따른 기능적 정확성 간의 상충 관계를 분석한다. 실험 결과를 통해 프롬프트 튜닝이 기존 방법에 비해 추가 파라미터를 크게 줄이면서도 보안률을 향상시킬 수 있음을 알 수 있었다. 미래 연구 방향으로는 새로운 조정 손실함수와 하이퍼파라미터 값을 조정하여 성능을 더욱 향상시킬 수 있는지 조사할 것이다. 이러한 연구는 보다 안전하고 신뢰할 수 있는 코드 생성을 위한 중요한 발전을 이끌 수 있을 것으로 기대된다.
최근 대규모 언어모델 (large language models) 을 활용하여 다양한 자연어처리 문제를 추가학습 없이 풀어내기 위한 zero-shot 학습에 대한 연구가 활발히 수행되고 있다. 특히 프롬프트 튜닝(prompt tuning)을 활용하여 적은 학습만으로도 효과적으로 다양한 태스크에 적응하도록 돕는 방법이 최근 대규모 언어모델의 성능을 향상시키고 있다. 본 논문은 명령어 튜닝 (instruction tuning) 이 언어모델에 끼치는 영향을 분석하였다. 명령어 튜닝된 모델이 기존 언어모델과 비교하여 변화된 문장 생성 특징, 생성된 문장의 품질 등에 대한 분석을 수행하고 결과를 제시한다.
최근 지식 기반 대화 생성에 많은 연구자가 초점을 맞추고 있다. 특히, 특정 도메인에서의 작업 지향형 대화 시스템을 구축하는 것은 다양한 도전 과제가 있으며, 이 중 하나는 거대 언어 모델이 입력과 관련된 지식을 활용하여 응답을 생성하는 데 있다. 하지만 현재 거대 언어 모델은 작업 지향형 대화에서 단순히 정보를 열거하는 방식으로 응답을 생성하는 경향이 있다. 이 논문에서는 전문 지식과 대화 정책 예측 모델을 결합한 프롬프트를 제시하고 작업 지향형 대화에서 사용자의 최근 입력에 대한 정보 제공 및 일상 대화를 지원하는 가능성을 탐구한다. 이러한 새로운 접근법은 모델 파인튜닝에 비해 비용 측면에서 효율적이며, 향후 대화 생성 분야에서 발전 가능성을 제시한다.
디퓨전 모델에서 생성한 이미지를 조작하는 기존 프롬프트 기반 방법과 포인트 기반 방법에는 각각의 단점이 있다. 프롬프트 기반은 프롬프트로만 조작이 가능하고 세세하지 못하다. 포인트 기반은 입력 이미지의 스타일을 보존하려면 파인튜닝이 필요하다. 본 논문은 디퓨전 생성 모델에 셀프 어텐션 제어와 드래그 조작을 통해, 파라미터 학습 없이, 이미지의 스타일을 보존하며 다양한 범위의 이미지 조작이 가능한 방법을 제안한다.
현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.
본 논문은 언어 발달의 핵심 시기에 있는 유아 및 초등학교, 중학교 저학년 아동들을 대상으로 문해력 향상을 목표로 하는 대화형 스마트 기기 잠금 화면 애플리케이션 '스마트 락'의 개발 과정 중 문제 생성을 위해 사용한 생성형 인공지능인 GPT와 GPT API를 활용하기 위한 프롬프트 엔지니어링에 대한 내용을 다룬다. 스마트폰을 활용한 미디어의 사용이 아동들 사이에 널리 퍼져 있는 상황에서, 스마트폰을 기반으로 하는 미디어가 문해력 저하의 주된 원인으로 제시되고 있다. 본 연구에서는 아동들에게 문해력 향상 환경을 스마트폰을 활용하는 형태로 제공하기 위하여 부모와의 대화 과정을 모사한 애플리케이션을 문해력 향상을 위한 도구로 제안한다. 아동 문해력 향상을 위한 문제 생성을 위하여 생성형 인공지능 GPT를 활용하였다. 사전 생성한 데이터를 기반으로 사용하여 부모와의 대화 속 상황을 제시하였고, 프롬프트 엔지니어링을 통해 애플리케이션에 사용되는 문제를 생성하고, 파라미터 튜닝 및 Function Calling 과정을 거쳐 응답 품질을 높였다. 본 연구는 대화형 애플리케이션의 개발과정을 통해 생성형 인공지능을 활용한 문해력 증진 교육의 가능성을 알아본다.
최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.
문서에서 테이블은 중요한 정보들을 축약하여 모아 놓은 정보 집합체라고 할 수 있다. 이러한 테이블을 대상으로 질의응답하는 테이블 질의응답 기술이 연구되고 있으며, 이 중 언어모델을 이용한 연구가 좋은 결과를 보이고 있다. 본 연구에서는 최근 주목받고 있는 생성형 언어모델 기술을 테이블 질의응답에 적용하여 언어모델과 프롬프트의 변경에 따른 결과를 살펴보고, 단답형 정답과 생성형 결과의 특성에 적합한 평가방법으로 측정해 보았다. 자체 개발한 EXAONE 1.7B 모델의 경우 KorWiki 데이터셋에 대해 적용하여 EM 92.49, F1 94.81의 결과를 얻었으며, 이를 통해 작은 크기의 모델을 파인튜닝하여 GPT-4와 같은 초거대 모델보다 좋은 성능을 보일 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.