• 제목/요약/키워드: 프롬프트 튜닝

검색결과 11건 처리시간 0.025초

메타 정보를 활용한 프롬프트 기반 도메인 특화 한국어 관계 추출 (Domain-specific Korean Relation Extraction system using Prompt with Meta-Information)

  • 김진성;김경민;손준영;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.369-373
    • /
    • 2022
  • 기존의 관계 추출 태스크에서의 많은 연구들은 사전학습 언어모델을 파인튜닝하여 뛰어난 성능을 달성해왔다. 하지만, 파인튜닝은 사전학습 시의 학습 기법과의 간극으로 인해 일반화 능력을 저해한다. 본 연구는 다운스트림 태스크를 사전학습의 Masked Language Modeling (MLM) 기법을 통해 해결하는 프롬프트 기반의 학습 기법을 활용하여, 특정 한국어 도메인에서의 관계 추출을 위한 프롬프트 기반 파인튜닝 방법론을 제안한다. 실험의 경우, 도메인의 특성이 뚜렷한 전통문화유산 말뭉치를 대상으로 실험을 진행하여 본 방법론의 도메인 적응력을 보이며, 메타 정보 즉, 개체 유형 및 관계 유형의 의미론적 정보를 일종의 지식 정보로 활용하여 프롬프트 기반 지식 주입의 효과성을 검증한다. 프롬프트에의 메타 정보의 주입과 함께 프롬프트 기반으로 파인튜닝된 모델은 오직 MLM 기법만을 이용하여 태스크를 수행하여 기존 파인튜닝 방법론 대비 파라미터 수가 적음에도, 성능 면에서 대부분 소폭 상승하는 경향을 보여줌으로써 그 효과성 및 효율성을 보인다.

  • PDF

프롬프트 튜닝기법을 적용한 한국어 속성기반 감정분석 (Prompt Tuning For Korean Aspect-Based Sentiment Analysis)

  • 김봉수;전현규;최승호;김지윤;장정훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.50-55
    • /
    • 2023
  • 속성 기반 감정 분석은 텍스트 내에서 감정과 해당 감정이 특정 속성, 예를 들어 제품의 특성이나 서비스의 특징에 어떻게 연결되는지를 분석하는 태스크이다. 본 논문에서는 속성 기반 감정 분석 데이터를 사용한 다중 작업-토큰 레이블링 문제에 프롬프트 튜닝 기법을 적용하기 위한 포괄적인 방법론을 소개한다. 이러한 방법론에는 토큰 레이블링 문제를 시퀀스 레이블링 문제로 일반화하기 위한 감정 표현 영역 검출 파이프라인이 포함된다. 또한 분리된 시퀀스들을 속성과 감정에 대해 분류 하기 위한 템플릿을 선정하고, 데이터셋 특성에 맞는 레이블 워드를 확장하는 방법을 제안함으써 모델의 성능을 최적화한다. 최종적으로, 퓨샷 세팅에서의 속성 기반 감정 분석 태스크에 대한 몇 가지 실험 결과와 분석을 제공한다. 구축된 데이터와 베이스라인 모델은 AIHUB(www.aihub.or.kr)에 공개되어 있다.

  • PDF

코드 생성 언어 모델의 코드 보안성 향상을 위한 프롬프트 튜닝 (Prompt Tuning for Enhancing Security of Code in Code Generation Language Models)

  • 유미선;한우림;조윤기;백윤흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.623-626
    • /
    • 2024
  • 최근 거대 언어 모델의 발전으로 프로그램 합성 분야에서 활용되고 있는 코드 생성 언어 모델의 보안적 측면에 대한 중요성이 부각되고 있다. 그러나, 이를 위해 모델 전체를 재학습하기에는 많은 자원과 시간이 소모된다. 따라서, 본 연구에서는 효율적인 미세조정 방식 중 하나인 프롬프트 튜닝으로 코드 생성 언어 모델이 안전한 코드를 생성할 확률을 높이는 방법을 탐구한다. 또한 이에 따른 기능적 정확성 간의 상충 관계를 분석한다. 실험 결과를 통해 프롬프트 튜닝이 기존 방법에 비해 추가 파라미터를 크게 줄이면서도 보안률을 향상시킬 수 있음을 알 수 있었다. 미래 연구 방향으로는 새로운 조정 손실함수와 하이퍼파라미터 값을 조정하여 성능을 더욱 향상시킬 수 있는지 조사할 것이다. 이러한 연구는 보다 안전하고 신뢰할 수 있는 코드 생성을 위한 중요한 발전을 이끌 수 있을 것으로 기대된다.

명령어 튜닝이 대규모 언어 모델의 문장 생성에미치는 영향력 분석 (A Study on Instruction Tuning for Large-scale Language Models)

  • 나요한;채동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.684-686
    • /
    • 2023
  • 최근 대규모 언어모델 (large language models) 을 활용하여 다양한 자연어처리 문제를 추가학습 없이 풀어내기 위한 zero-shot 학습에 대한 연구가 활발히 수행되고 있다. 특히 프롬프트 튜닝(prompt tuning)을 활용하여 적은 학습만으로도 효과적으로 다양한 태스크에 적응하도록 돕는 방법이 최근 대규모 언어모델의 성능을 향상시키고 있다. 본 논문은 명령어 튜닝 (instruction tuning) 이 언어모델에 끼치는 영향을 분석하였다. 명령어 튜닝된 모델이 기존 언어모델과 비교하여 변화된 문장 생성 특징, 생성된 문장의 품질 등에 대한 분석을 수행하고 결과를 제시한다.

전문 지식 및 대화 정책 예측이 결합된 프롬프트를 활용한 지식 기반 대화 생성 (Knowledge-Grounded Dialogue Generation Using Prompts Combined with Expertise and Dialog Policy Prediction)

  • 주어진;임채균;이도경;윤준영;성주원;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.409-414
    • /
    • 2023
  • 최근 지식 기반 대화 생성에 많은 연구자가 초점을 맞추고 있다. 특히, 특정 도메인에서의 작업 지향형 대화 시스템을 구축하는 것은 다양한 도전 과제가 있으며, 이 중 하나는 거대 언어 모델이 입력과 관련된 지식을 활용하여 응답을 생성하는 데 있다. 하지만 현재 거대 언어 모델은 작업 지향형 대화에서 단순히 정보를 열거하는 방식으로 응답을 생성하는 경향이 있다. 이 논문에서는 전문 지식과 대화 정책 예측 모델을 결합한 프롬프트를 제시하고 작업 지향형 대화에서 사용자의 최근 입력에 대한 정보 제공 및 일상 대화를 지원하는 가능성을 탐구한다. 이러한 새로운 접근법은 모델 파인튜닝에 비해 비용 측면에서 효율적이며, 향후 대화 생성 분야에서 발전 가능성을 제시한다.

  • PDF

디퓨전 모델에서의 전 범위적 이미지 조작을 위한 셀프 어텐션 제어 및 드래그 특징 반영 연구 (Image Manipulation in Diffusion Model withDrag Input using Self-Attention Control)

  • 임성윤;조영주;이용주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.465-468
    • /
    • 2023
  • 디퓨전 모델에서 생성한 이미지를 조작하는 기존 프롬프트 기반 방법과 포인트 기반 방법에는 각각의 단점이 있다. 프롬프트 기반은 프롬프트로만 조작이 가능하고 세세하지 못하다. 포인트 기반은 입력 이미지의 스타일을 보존하려면 파인튜닝이 필요하다. 본 논문은 디퓨전 생성 모델에 셀프 어텐션 제어와 드래그 조작을 통해, 파라미터 학습 없이, 이미지의 스타일을 보존하며 다양한 범위의 이미지 조작이 가능한 방법을 제안한다.

Prefix-tuning에 기반한 한국어 자연언어 처리 (Prefix-tuning for Korean Natural language processing)

  • 민진우;나승훈;신동욱;김선훈;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.622-624
    • /
    • 2021
  • 현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.

  • PDF

생성형 AI와 프롬프트 엔지니어링 기반 아동 문해력 향상을 위한 애플리케이션 (Application based on Generative AI and Prompt Engineering to Improve Children's Literacy)

  • 김소연;서호건
    • 스마트미디어저널
    • /
    • 제13권8호
    • /
    • pp.26-38
    • /
    • 2024
  • 본 논문은 언어 발달의 핵심 시기에 있는 유아 및 초등학교, 중학교 저학년 아동들을 대상으로 문해력 향상을 목표로 하는 대화형 스마트 기기 잠금 화면 애플리케이션 '스마트 락'의 개발 과정 중 문제 생성을 위해 사용한 생성형 인공지능인 GPT와 GPT API를 활용하기 위한 프롬프트 엔지니어링에 대한 내용을 다룬다. 스마트폰을 활용한 미디어의 사용이 아동들 사이에 널리 퍼져 있는 상황에서, 스마트폰을 기반으로 하는 미디어가 문해력 저하의 주된 원인으로 제시되고 있다. 본 연구에서는 아동들에게 문해력 향상 환경을 스마트폰을 활용하는 형태로 제공하기 위하여 부모와의 대화 과정을 모사한 애플리케이션을 문해력 향상을 위한 도구로 제안한다. 아동 문해력 향상을 위한 문제 생성을 위하여 생성형 인공지능 GPT를 활용하였다. 사전 생성한 데이터를 기반으로 사용하여 부모와의 대화 속 상황을 제시하였고, 프롬프트 엔지니어링을 통해 애플리케이션에 사용되는 문제를 생성하고, 파라미터 튜닝 및 Function Calling 과정을 거쳐 응답 품질을 높였다. 본 연구는 대화형 애플리케이션의 개발과정을 통해 생성형 인공지능을 활용한 문해력 증진 교육의 가능성을 알아본다.

퓨샷 개체명 인식을 위한 Maximal Marginal Relevance 기반의 라벨 단어 집합 생성 (Generating Label Word Set based on Maximal Marginal Relevance for Few-shot Name Entity Recognition)

  • 최효림;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.664-671
    • /
    • 2023
  • 최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.

  • PDF

생성형 언어모델을 이용한 테이블 질의응답 평가 (Evaluating Table QA with Generative Language Models)

  • 민경구;최주영;심묘섭;정해민;박민준;최정규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-79
    • /
    • 2023
  • 문서에서 테이블은 중요한 정보들을 축약하여 모아 놓은 정보 집합체라고 할 수 있다. 이러한 테이블을 대상으로 질의응답하는 테이블 질의응답 기술이 연구되고 있으며, 이 중 언어모델을 이용한 연구가 좋은 결과를 보이고 있다. 본 연구에서는 최근 주목받고 있는 생성형 언어모델 기술을 테이블 질의응답에 적용하여 언어모델과 프롬프트의 변경에 따른 결과를 살펴보고, 단답형 정답과 생성형 결과의 특성에 적합한 평가방법으로 측정해 보았다. 자체 개발한 EXAONE 1.7B 모델의 경우 KorWiki 데이터셋에 대해 적용하여 EM 92.49, F1 94.81의 결과를 얻었으며, 이를 통해 작은 크기의 모델을 파인튜닝하여 GPT-4와 같은 초거대 모델보다 좋은 성능을 보일 수 있음을 확인하였다.

  • PDF