• Title/Summary/Keyword: 프로판 탈수소

Search Result 8, Processing Time 0.017 seconds

Effect of Hydrogen Ratio and Tin Addition on the Coke Formation of Platinum Catalyst for Propane Dehydrogenation Reaction (프로판 탈수소화 반응용 백금촉매의 코크 생성에 미치는 수소비와 주석첨가의 영향)

  • Kim, Soo Young;Kim, Ga Hee;Koh, Hyoung Lim
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.82-88
    • /
    • 2016
  • The loss of activity by coke is an important cause of catalyst deactivation during industrial operation. In this study, hydrogen ratio of reaction condition, which has influenced on coke formation over Pt-Sn catalyst, and regeneration of catalysts activity by coke burning, Pt sintering of coke burning as coke contents, effects of coke formation and deactivation with different Sn contents were confirmed. Pt-Sn-K catalyst supported on θ-alumina and γ-alumina was prepared progressively. Activity of regenerated catalyst for propane dehydrogenation was compared with fresh catalyst by coke burning, after propane dehydrogenation was carried out with different hydrogen ratio at 620 ℃ on fresh catalyst. Regenerated catalyst’s physical characterization such as BET, coke analysis and XRD was investigated. Through catalytic activity test and characterization, Sn contents of catalyst and hydrogen ratio in feed stream could affect coke formation on catalyst surface. Excessive coke makes loss of activity and Pt sintering during air regeneration process.

A Study on the Propane Dehydrogenation activity of Pt-Sn catalyst using MgAl2O4 support (MgAl2O4 지지체를 이용한 Pt-Sn/MgAl2O4의 프로판 탈수소 활성 연구)

  • Byun, Hyun-Joon;Koh, Hyounglim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.757-767
    • /
    • 2018
  • In the propane dehydrogenation reaction proceeding at high temperature, the main cause of deactivation of the catalyst is coke deposition and sintering. In order to investigate the catalysts for reducing such inactivation, we have investigated the applicability of $MgAl_2O_4$ as a carrier for the catalytic dehydrogenation reaction. $MgAl_2O_4$ was prepared by Alcohthermal method at calcination temperature of 800, 900, $1000^{\circ}C$, and $Pt-Sn/MgAl_2O_4$ catalyst was prepared by supporting Pt and Sn by co-impregnation method. The reaction temperature was conducted at a high temperature of 650, $600^{\circ}C$ to confirm the thermal stability. As a result of the reaction experiment, it was confirmed that the conversion rate and yield of propane dehydrogenation reaction test were higher than that of the carrier-applied catalyst having a carrier calcination temperature of 900 and $1000^{\circ}C$, when the carrier-applied catalyst having a calcination temperature of $800^{\circ}C$ was used, It was found that the yield was higher than that of $Pt-Sn/{\theta}-Al_2O_3$ at $650^{\circ}C$. TGA, BET, XRD, CO-chemisorption, and SEM-EDS analyzes were performed for characterization. $MgAl_2O_4-800^{\circ}C$ was correlated with the relationship between good yield, Pt dispersion and low deactivation rate.

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

Study of the Dehydrogenation Characteristics of Pt-Sn Catalysts by Propane Pulse Injection (프로판 펄스 주입에 의한 백금주석촉매의 탈수소반응 특성 연구)

  • Koh, Hyoung Lim;Jung, Jae-Won;Choi, Yi-Sun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.575-583
    • /
    • 2019
  • The results of the catalytic reaction by pulsed injection of reactants are useful for studying the initial reaction characteristics in the case of many coke invloved reactions. The dehydrogenation characteristics of alumina supported platinum tin catalysts were investigated by pulsed injection of propane. The yield of propylene was maximized when the reduction time of propane injection catalyst was $550^{\circ}C$. Raman analysis showed that the amount of coke was very small when PtSn (4.5) catalyst was used and the short contact time was simulated by propane pulse injection. n order to differentiate the degree of dispersion of platinum, PtSn (4.5) catalyst was sintered at $900^{\circ}C$ with hydrogen, and then the temperature of air - redispersion was varied and propane pulse was injected. As a result, conversione and yield were the highest when air-redispersion temperature is $600^{\circ}C$. The lower the air-redispersion temperature, the higher the selectivity. As the tin content in the platinum catalyst increased, the propane conversion was lowered, but the selectivity to propylene increased and the yield increased. From this, it can be seen that the tin-added platinum catalyst is less active than the platinum catalyst from the beginning of the reaction, which is less affected by coke. The dehydrogenation reaction by the propane pulse injection shows a higher conversion rate than the result of continuous injection due to the formation of COx, and the amount of coke is very small. Decrease in selectivity due to the formation of COx can be reduced by increasing the reduction temperature and time.

Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes (경질알칸의 탈수소 반응을 위한 산소활용기술 연구 동향)

  • Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.128-134
    • /
    • 2016
  • Due to the great development made in converting the shale gas into the more valuable products, research and commercialization for production technology of olefins like propylene, butenes, butadiene from light alkanes have been intensively investigated. Especially the technology using oxygen like oxidative dehydrogenation or selective hydrogen combustion to overcome thermodynamic limit of direct dehydrogenation conversion has been extensively studied and some cases of applying this technology to the plant scale was reported. In this review, we have categorized the technology into two parts; gas phase oxygen utilization technology and lattice oxygen utilization technology. The trends, results and future direction of the technology are discussed.

Acidic Properties of Mg-Al Mixed Oxides in the Dehydration of iso-Propanol (이소프로판올의 탈수반응에 있어서 Mg-Al 혼합 산화물의 산점 특성)

  • Youn, Hyunki;Ahn, Ji-Hye;Park, Jung-Hyun;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Mg-Al mixed oxides with molar ratio of Mg/Al = 1-3 were prepared by co-precipitation and characterized by using X-ray diffraction, scanning electron microscopy, BET surface area and pore volume measured by $N_2$ sorption analysis, and temperature programmed desorption of iso-propanol. As Al content in Mg-Al mixed oxide increased, the acidity and BET surface area proportionally increased. This increase of acidity directly influenced the catalytic activity of iso-propanol conversion and selectivity to propylene.

Studies on the Selective Oxidation of Niobium Containing Mixed Metal Oxide Catalysts (니오비움 함유 복합 금속산화물 촉매의 선택산화반응에 관한 연구)

  • Kim, Young-Chul;Kim, Hyeong-Ju;Moon, Dong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.129-134
    • /
    • 1998
  • Conversion of propane to acrylonitrile via ammoxidation was studied using physically mixed catalysts composed of $Nb_2O_5(10{\sim}30wt%)$ and $V_{0.4}Mo_1Te_{0.1}$. Catalytic activities of ammoxidation were improved by adding strong acidic niobium oxide to $V_{0.4}Mo_1Te_{0.1}$, the selectivities to acrylonitrile+propylene being remained constant. The maximum activity was obtained at the mixing ratio 25wt% niobium oxide in $Nb_2O_5-V_{0.4}Mo_1Te_{0.1}$. Niobium oxide was found to be a selective catalyst for the oxidative dehydrogenation of propane.

  • PDF

Redispersion of Sintered PtSn Catalyst by Oxygen Treatment (소결된 백금주석 촉매의 산소 처리에 의한 재분산 연구)

  • Choi, Yi Sun;Kim, Tae hee;Koh, Hyoung Lim
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.459-467
    • /
    • 2022
  • Redispersion of Pt-Sn particles in Pt, PtSn catalyst which have been sintered by high temperature hydrogen reduction was investigated using oxygen treatment with various temperatures. The aim of this study was to understand the relationship between the catalytic activity for propane dehydrogenation reaction and the change in the physicochemical properties of the catalyst. X-ray diffraction analysis (XRD), CO pulse chemisorption, and H2 temperature programmed reduction (H2-TPR) were performed to investigate the state of active metal and interactions between particles of redispersed catalyst. It was confirmed that the dispersion and particle size of platinum, the crystal phase of the catalyst, and the reduction behavior were changed according to the oxygen treatment. As for the catalytic activity in propane dehydrogeantion, sintered PtSn catalyst treated with oxygen at 500 ℃ showed best activity and recovery of initial activity. It was confirm that catalyst after oxygen treatment at 500 ℃ showed high dispersion of Pt and decreased particle size as the results of CO pulse chemisorption and XRD of catalyst, and thus the redispersion of PtSn particles in sintered catalyst was occurred. Catalytic activity was recovered due to redispersion using oxygen treatment, and the activity recovery of the PtSn catalyst was higher than that of Pt catalyst.