• Title/Summary/Keyword: 프로세스시뮬레이션

Search Result 428, Processing Time 0.02 seconds

A Markov Chain Model for Population Distribution Prediction Considering Spatio-Temporal Characteristics by Migration Factors (이동요인별 시·공간적 인구이동 특성을 고려한 인구분포 예측: 마르코프 연쇄 모형을 활용하여)

  • Park, So Hyun;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.351-365
    • /
    • 2019
  • This study aims to predict the changes in population distribution in Korea by considering spatio-temporal characteristics of major migration reasons. For the purpose, we analyze the spatio-temporal characteristics of each major migration reason(such as job, family, housing, and education) and estimate the transition probability, respectively. By appling Markov chain model processes with the ChapmanKolmogorov equation based on the transition probability, we predict the changes in the population distribution for the next six years. As the results, we found that there were differences of population changes by regions, while there were geographic movements into metropolitan areas and cities in general. The methodologies and the results presented in this study can be utilized for the provision of customized planning policies. In the long run, it can be used as a basis for planning and enforcing regionally tailored policies that strengthen inflow factors and improve outflow factors based on the trends of population inflow and outflow by region by movement factors as well as identify the patterns of population inflow and outflow in each region and predict future population volatility.

Deep Learning-based Technology Valuation and Variables Estimation (딥러닝 기반의 기술가치평가와 평가변수 추정)

  • Sung, Tae-Eung;Kim, Min-Seung;Lee, Chan-Ho;Choi, Ji-Hye;Jang, Yong-Ju;Lee, Jeong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.48-58
    • /
    • 2021
  • For securing technology and business competences of companies that is the engine of domestic industrial growth, government-supported policy programs for the creation of commercialization results in various forms such as 『Technology Transaction Market Vitalization』 and 『Technology Finance-based R&D Commercialization Support』 have been carried out since 2014. So far, various studies on technology valuation theories and evaluation variables have been formalized by experts from various fields, and have been utilized in the field of technology commercialization. However, Their practicality has been questioned due to the existing constraint that valuation results are assessed lower than the expectation in the evaluation sector. Even considering that the evaluation results may differ depending on factors such as the corporate situation and investment environment, it is necessary to establish a reference infrastructure to secure the objectivity and reliability of the technology valuation results. In this study, we investigate the evaluation infrastructure built by each institution and examine whether the latest artificial neural networks and deep learning technologies are applicable for performing predictive simulation of technology values based on principal variables, and predicting sales estimates and qualitative evaluation scores in order to embed onto the technology valuation system.

Study on the Development of Methodology for Evaluation of Driving Safety of Automated Vehicles on Real Roads (실도로 기반 자율주행자동차 주행안전성 평가 방법론 개발 연구)

  • Lee, Youngtaek;Kim, Yejin;Jeong, Harim;Yoo, Hosik;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.280-298
    • /
    • 2021
  • As the development automated vehicles(AV) actively progresses around the world, the demand for a reasonable and systematic evaluation method for AVs is increasing. Research on scenarios, evaluation procedures, and methods for evaluating AVs conducted in simulations and proving ground(PG) is actively conducted internationally. In contrast, methods and procedures for evaluations on real roads are still in their infancy internationally. Therefore, it is necessary to conduct research on evaluating AVs on real roads in preparation for future use of AVs. This study aims to define the basic direction for evaluating the driving safety of AVs on real roads. To this end, the evaluation direction and process of AVs were presented on the real roads, and qualitative and quantitative evaluation indicators were selected to evaluate driving safety. A total of 38 items were selected based on the Road Traffic Act as qualitative evaluation items for evaluating the driving safety of AVs on real roads.

A Study on the Risk Analysis and Fail-safe Verification of Autonomous Vehicles Using V2X Based on Intersection Scenarios (교차로 시나리오 기반 V2X를 활용한 자율주행차량의 위험성 분석 및 고장안전성 검증 연구)

  • Baek, Yunseok;Shin, Seong-Geun;Park, Jong-ki;Lee, Hyuck-Kee;Eom, Sung-wook;Cho, Seong-woo;Shin, Jae-kon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.299-312
    • /
    • 2021
  • Autonomous vehicles using V2X can drive safely information on areas outside the sensor coverage of autonomous vehicles conventional autonomous vehicles. As V2X technology has emerged as a key component of autonomous vehicles, research on V2X security is actively underway research on risk analysis due to failure of V2X communication is insufficient. In this paper, the service scenario and function of autonomous driving system V2X were derived by presenting the intersection scenario of the autonomous vehicle, the malfunction was defined by analyzing the hazard of V2X. he ISO26262 Part3 process was used to analyze the risk of malfunction of autonomous vehicle V2X. In addition, a fault injection scenario was presented to verify the fail-safe of the simulation-based intersection scenario.

Peak Impact Force of Ship Bridge Collision Based on Neural Network Model (신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.175-183
    • /
    • 2022
  • The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Optimal Exploration-Exploitation Strategies in Reinforcement Learning for Online Banner Advertising: The Impact of Word-of-Mouth Effects (온라인 배너 광고 강화학습의 최적 탐색-활용 전략: 구전효과의 영향)

  • Bumsoo Kim;Gun Jea Yu;Joonkyum Lee
    • Journal of Service Research and Studies
    • /
    • v.14 no.2
    • /
    • pp.1-17
    • /
    • 2024
  • One of the most important decisions for managers in the online banner advertising industry, is to choose the best banner alternative for exposure to customers. Since it is difficult to know the click probability of each banner alternative in advance, managers must experiment with multiple alternatives, estimate the click probability of each alternative based on customer clicks, and find the optimal alternative. In this reinforcement learning process, the main decision problem is to find the optimal balance between the level of exploitation strategy that utilizes the accumulated estimated click probability information and exploration strategy that tries new alternatives to find potentially better options. In this study we analyze the impact of word-of-mouth effects and the number of alternatives on the optimal exploration-exploitation strategies. More specifically, we focus on the word-of-mouth effect, where the click-through rate of the banner increases as customers promote the related product to those around them after clicking the exposed banner, and add it to the overall reinforcement learning process. We analyze our problem by employing the Multi-Armed Bandit model, and the analysis results show that the larger the word-of-mouth effect and the fewer the number of banner alternatives, the higher the optimal exploration level of advertising reinforcement learning. We find that as the probability of customers clicking on the banner increases due to the word-of-mouth effect, the value of the previously accumulated estimated click-through rate knowledge decreases, and therefore the value of exploring new alternatives increases. Additionally, when the number of advertising alternatives is small, a larger increase in the optimal exploration level was observed as the magnitude of the word-of-mouth effect increased. This study provides meaningful academic and managerial implications at a time when online word-of-mouth and its impact on society and business is becoming more important.

Design and Analysis of Online Advertising Expenditure Model based on Coupon Download (쿠폰 다운로드를 기준으로 하는 온라인 광고비 모델의 설계 및 분석)

  • Jun, Jung-Ho;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.1-19
    • /
    • 2010
  • In offline environment, unlike traditional advertising model through TV, newspaper, and radio, online advertising model draws instantaneous responses from potential consumers and it is convenient to assess. This kind of characteristics of Internet advertising model has driven the growth of advertising model among various Internet business models. There are, conventionally classified, CPM (Cost Per Mile), CPC (Cost Per Click), and CPS (Cost Per Sales) models as Internet advertising expenditure model. These can be examined in manners regarding risks that stakeholders should stand and degree of responsibility. CPM model that is based on number of advertisement exposure is mechanically exposed to users but not actually recognized by users resulting in risk of wasted expenditure by advertisers without any advertising effect. While on aspect of media, CPS model that is based on conversion action is the most risky model because of the conversion action such as product purchase is determined by capability of advertisers not that of media. In this regard, while there are issue of CPM and CPS models disadvantageously affecting only one side of Internet advertising business model value network, CPC model has been evaluated as reasonable both to advertisers and media, and occupied the largest segment of Internet advertising market. However, CPC model also can cause fraudulent behavior such as click fraud because of the competition or dishonest amount of advertising expenditure. On the user aspect, unintentionally accessed advertisements can lead to more inappropriate expenditure from advertisers. In this paper, we suggest "CPCD"(Cost Per Coupon Download) model. This goes beyond simple clicking of advertisements and advertising expenditure is exerted when users download a coupon from advertisers, which is a concept in between CPC and CPS models. To achieve the purpose, we describe the scenario of advertiser perspective, processes, participants and their benefits of CPCD model. Especially, we suggest the new value in online coupon; "possibility of storage" and "complement for delivery to the target group". We also analyze the working condition for advertiser by a comparison of CPC and CPCD models through advertising expenditure simulation. The result of simulation implies that the CPCD model suits more properly to advertisers with medium-low price products rather than that of high priced goods. This denotes that since most of advertisers in CPC model are dealing with medium-low priced products, the result is very interesting. At last, we contemplate applicability of CPCD model in ubiquitous environment.