• Title/Summary/Keyword: 프로브오차

Search Result 75, Processing Time 0.022 seconds

Development of Hole Inspection Program using Touch Trigger Probe on CNC Machine Tools (CNC 공작기계 상에서 접촉식 측정 프로브를 이용한 홀 측정 프로그램 개발)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.195-201
    • /
    • 2012
  • According to many customers' requests, optical measurement module (OMM) applications using automatic measuring devices to measure the machined part rapidly on a machine tool have increased steeply. Touch trigger probes are being used for job setup and feature inspection as automatic measuring devices, and this makes quality checking and machining compensation possible. Therefore, in this study, the use of touch trigger probes for accurate measurement of the machined part has been studied and a macro program for a hole measuring cycle has been developed. This hole is the most common feature to be measured, but conventional methods are still not free from measuring error. In addition, the eccentricity change of the least square circle was simulated according to the roundness error in a hole measurement. To evaluate the reliability of this study, the developed hole-measuring program was executed to measure the hole plate on the machine and verify the roundness error in the eccentricity simulation result.

Development of a Shockwave Detection Method based on Continuous Wavelet Transform using Vehicle Trajectory Data (차량 궤적 데이터를 활용한 연속웨이블릿변환 기반 충격파 검지 방법 개발)

  • Yang, Inchul;Jeon, Woo Hoon;Lee, Jo Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.183-193
    • /
    • 2019
  • This study developed a shockwave detection and prediction of their extinction point method based on continuous wavelet transform using trajectory data from probe vehicles equipped with automotive sensors.. To analyze the effectiveness of the proposed method, this paper proposed two measures which are a distance error between the extinction points of the predictor and an time-location error of the extinction points. The proposed concept was proved using the micro simulation based experiment with three exogenous variables of traffic volume, lane-close duration, market penetration of probe vehicles. The analysis results show that the proposed method is capable of detecting the traffic shockwaves as well as predicting their extinction point, and also that the accuracy of the proposed method is highly dependent on the rate of the probe vehicles.

Materials Compatibility and Structure Optimization of Test Department Probe for Quality Test of Fingerprint Sensor (지문인식센서 품질평가를 위한 검사부 프로브의 소재 적합성과 구조 최적화 연구)

  • Son, Eun-Won;Youn, Ji Won;Kim, Dae Up;Lim, Jae-Won;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.73-77
    • /
    • 2017
  • Recently, fingerprint sensors have widely used for personal information security, and require quality evaluation to reduce an error of their recognition rate. Quality of fingerprint sensors is evaluated by variation of their electrical resistance introducing by contacts between a probe tip and a sensor electrode, Investigation on the materials compatability and structure optimization of probe is required to reduce deformation of sensor electrode for repeatability of quality testing. Nickel, steel(SK4), beryllium copper, and phosphor bronze were considered as probe materials, and beryllium copper was the most appropriate for materials of probe tips, considering indentation and contact resistance while being contacted probe tips on electrodes. Probes of an inspection part were manufactured with the single-unit structure for physical damage prevention and parallel processing capability. Inspection repeatability was evaluated by voltage variation of fingerprint sensors when the specific current was applied. A single-unit inspection part with beryllium copper probe tips showed excellent repeatability within ${\pm}0.003V$ of its voltage variation.

Analysis on Accuracy of GPS installed in Digital Tachograph of Commercial vehicles (사업용 차량의 프로브 활용 가능성 평가를 위한 디지털운행기록계 위치정보 정확도 분석)

  • Sim, HyeonJeong;Chae, Chandle;Kang, Minju;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.164-175
    • /
    • 2019
  • Installation of digital tachograph, black box, and ADAS have been enforced to commercial vehicles for preventing violent driving and accidents by the Traffic Safety Act in Korea. Nevertheless, the damage caused by road hazards has increased 1.5 times in 2016 compared to 2013. So, developing new technologies that can identify road hazard using the sensors installed in commercial vehicles are conducting by the Ministry of Land, Infrastructure and Transport. As a part of the technologies, this research analyze the error range of GPS installed in commercial vehicles that vary according to the driving speed. As a result, the average error was 9.72m at the driving speed of 100km/h, and the error was 2.1 times larger than the average error of 4.69m at the driving speed of 40km/h. The event point proper integration/separation range(m) was analyzed to be 20m with a recognition rate of 90% or more at the same point regardless of driving speed. The results of this research can be used as basic data for improving the accuracy of location-based data would be collected using commercial vehicles.

FDTD Verification of an Improved Conversion Model for an Open-Ended Coaxial Probe (개방단말 동축선 프로브의 개선된 환산모델에 대한 FDTD 검증)

  • 조유선;현승엽;김세윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.493-498
    • /
    • 2004
  • The complex permittivities of methanol measured from 0.2 to 2.0 ㎓ using an open-ended coaxial probe revealed the large deviation from the given data in literature. In this paper, it was investigated whether the given or measured complex permittivity is similar to the real value of our methanol used for experiment. The FDTD method was applied to confirm the effect of our conversion model excluding the effect of sufficiently small measurement error. The complex permittivities reconverted from the computed reflection coefficient by employing our improved conversion model were not similar to the given value but measured value. These results assured the accuracy and stability of our measurement-and-conversion process.

A Study on Calculation of Sectional Travel Speeds of the Interrupted Traffic Flow with the Consideration of the Characteristics of Probe Data (프로브 자료의 특성을 고려한 단속류의 구간 통행속도 산출에 관한 연구)

  • Jeong, Yeon Tak;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1851-1861
    • /
    • 2014
  • This study aims to calculate reliable sectional travel speeds with the consideration of the characteristics of the probe data collected in the interrupted traffic flow. First, in order to analysis the characteristics of the probe data, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle collected by DSRC. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. However, The comparison results show that the sectional travel speeds from the DSRC probe vehicles are not significantly different. Finally, based on the distribution characteristics of the sectional travel speeds of each probe vehicle and the representative values counted during a collection period, we drew the optimal outlier removal procedure and evaluated the estimation errors. The evaluation results showed that the DSRC sectional travel speeds were found to be similar to the observed values from actually running vehicles. On the contrary, in the case of the sectional travel speeds of intra-city bus, it was analyzed that they were less accurate than the DSRC sectional travel speeds. In the future, it will be necessary to improve BIS process and make use of the travel information on intra-city buses collected in real time to find various ways of applying it as traffic information.

Machining Accuracy Improvement by On Machine Part Measurement and Error Compensation (기상측정시스템과 오차보정을 이용한 가공정밀도 향상)

  • 최진필;민병권;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.34-41
    • /
    • 2003
  • This paper suggests a methodology fur improving the machining accuracy by compensating for the machining errors based on on-machine measurement process. Probing errors and machine tool errors included in the measurement data were calibrated or compensated to obtain the actual machining errors. Machine tool errors were modeled in forward and backward directions according to the axis movement direction to consider the effects of backlash errors on the measurement data, and model parameters were determined by measuring a cube array artifact. A rectangular workpiece was machined and then measured with a touch probe as a verification experiment. Machining experiments showed that the machining errors were reduced to within the designated tolerance after compensating for the actual machining errors by modifying the original footpath for the next-step machining.

Measurement of Motion Accuracy by Two-dimensional Probe on NC Machine Tools -2nd Report, Measurement of the Linear Motion Accuracy- (2차원 프로브에 의한 NC공작기계의 운동 정밀도 측정 -제2보 직선운동 정밀도 측정-)

  • JEON, Eon Chan;OYAMADA, Shigenori;TSUTSUMI, Masaomi;KAKUTA, Junichro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.15-21
    • /
    • 1997
  • This paper presented a linear motion accuracy by using two-dimensional probe with the master block and the square for NC machine tools. This measuring system could be measured motion error due to numerical control system. The results of measurement and simulation for motion error were similar, and so, this system had enough accuracy to measure a linear motion accuracy for NC machine tools. The experimental results are as follows. 1. This measuring system could be measured motion error due to mumerical control system. 2. The results of measurement and simulation for motion error were similar. 3. This measuring system had enough accuracy to measure a linear motion accuracy for NC machine tools.

  • PDF

Characteristics Analysis and Compensation of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석 보정)

  • 이재종;최대봉;박현구;곽성조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2001
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindel unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball arti-fact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Compensation of Thermal Error for the CNC Machine Tools (I) - The Basic Experiment of Compensation Device - (CNC 공작기계의 열변형 오차 보정 (I) - 보정장치 기초실험 -)

  • 이재종;최대봉;곽성조;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.453-457
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. In this study, the compensation device is manufactured in order to compensate thermal error of machine tools under the real-time. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF