Program similarity analysis consists of substantial similarity and access. Substantial similarity is a judgment of how similarly the program source code is quantitatively. Access determines the degree of similarity by analyzing comments in the program or other contextual evidence. In the case of manuals, it may be the subject of legitimacy analysis. Manuals can be divided into three types as follows. First, a master manual is a document created during the development stage of a product. It is a user manual that contains all the functionality of the product and its derivatives. Second, the customer manual is a manual that is open only to the primary customer and orderer. Third, the user manual is a document that is applied to the final OEM production stage and is open to the end purchaser. In this paper, we compare the master manual seized from the suspect and the master manual provided by the suspect on the Internet. It then determines how similar this master manual is and includes the victim company's original and property values.
Program Plagiarism is an infringement of software copyright. In detecting program plagiarism, many different source program comparison methods has been studied. But, it is not easy to detect plagiarized program that made a few cosmetic changes in program structures and variable names In this paper, we propose a new ground-breaking technique in detecting plagiarism by Memory Access Log Analysis.
In this paper, a new program recommendation system is proposed to recommend user preferred VOD program in IPTV environment. A proposed system is implemented with collaborative filtering method. For a user profile which describes user program preference, a program preference, sub-genre preference, and US(user similarity) weight of the user neighborhood is averaged and updated every week. In order to evaluate system performance, real 24-weeks cable TV watching data provided by Nilson Research Corp. are modified to fit for IPTV broadcasting environment and the simulation result shows quite comparative quality of recommendation. The experimental results optimum performance when user similarity based weighting, five person per group and five recommendation programs are used.
Many similarity analysis methods, one of the dispute resolution methods for computer programs, have been studied. This paper is about quantitative similarity analysis of MIB (Management Information Base) file. Quantitative similarity means that the source codes of two computers are analyzed and the results are compared with a certain standard. The source code to analyze is a program that provides network device management functions such as configuration management, fault management, and performance management using SNMP protocol for WiMAX CPE devices. Here, WiMAX refers to the IEEE 802.16 wireless network standard protocol and can be classified into fixed WiMAX and mobile WiMAX. WiMAX CPE is a wireless Internet terminal that is fixedly used in a customer's home or office. In this paper, we analyze the similarity between MIB file of company A and company B. We will analyze whether the MIB file leaked from the damaged company is not just a list to describe the product specifications, but whether the property value can be recognized.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.353-356
/
2017
앱 인벤터는 GUI 환경에서 블록 편집기를 사용하여 앱을 개발한다. 따라서 누구나 쉽게 앱 프로그래밍을 시작할 수 있다는 장점이 있다. 또한, 앱 인벤터의 공식 사이트의 gallery 공간에 공개된 수많은 공개 앱 소스(aia 파일)를 쉽게 구할 수 있기 때문에 다른 사람이 만든 앱의 소스를 그대로 가져다가 이미지만 바꿔서 자신이 만든 것처럼 앱을 공개할 수도 있다. 그러나 직접 블록 단위로 비교해보지 않고서는 표절이나 도용 여부를 판단하는 것은 쉽지 않다. 따라서 본 논문에서는 앱 인벤터로 개발한 앱들의 유사도를 자동으로 계산해주는 도구를 개발하였다. 원본 프로그램과 도용된 프로그램은 유사도가 높게 계산될 것임을 예상할 수 있기 때문에 유사도 계산 프로그램은 코드 도용을 확인하는 목적으로 활용될 수 있다. 본 논문에서 구현한 도구의 평가를 위해서 다양한 실험을 수행하였고, 실제로 유사도가 높았던 앱들이 서로 공통된 블록을 다수 포함하고 있음을 밝혀내었다. 이러한 실험결과를 바탕으로 우리가 개발한 도구가 앱 인벤터로 개발한 앱에 대해서 소스 표절이나 코드 도용을 탐지하는 목적으로 활용될 수 있을 것으로 기대한다.
Studies on software plagiarism detection, prevention and judgement have become widespread due to the growing of interest and importance for the protection and authentication of software intellectual property. Many previous studies focused on comparing all pairs of submitted codes by using attribute counting, token pattern, program parse tree, and similarity measuring algorithm. It is important to provide a clear-cut model for distinguishing plagiarism and collaboration. This paper proposes a source code clustering algorithm using a probability model on extreme value distribution. First, we propose an asymmetric distance measure pdist($P_a$, $P_b$) to measure the similarity of $P_a$ and $P_b$ Then, we construct the Plagiarism Direction Graph (PDG) for a given program set using pdist($P_a$, $P_b$) as edge weights. And, we transform the PDG into a Gumbel Distance Graph (GDG) model, since we found that the pdist($P_a$, $P_b$) score distribution is similar to a well-known Gumbel distribution. Second, we newly define pseudo-plagiarism which is a sort of virtual plagiarism forced by a very strong functional requirement in the specification. We conducted experiments with 18 groups of programs (more than 700 source codes) collected from the ICPC (International Collegiate Programming Contest) and KOI (Korean Olympiad for Informatics) programming contests. The experiments showed that most plagiarized codes could be detected with high sensitivity and that our algorithm successfully separated real plagiarism from pseudo plagiarism.
The similarity detection to plagiarism or duplication of computer programs requires a different type of analysis methods and tools according to the programming language used in the implementation and the sort of code to be analyzed. In recent years, the similarity appraisal for the object code in the embedded system, which requires a considerable resource along with a more complicated procedure and advanced skill compared to the source code, is increasing. In this study, we described a method for analyzing the similarity of functional units in the assembly language through the conversion of object code using the reverse engineering approach, such as the reverse assembly technique to the object code. The instruction and operand table for comparing the similarity is generated by using the syntax analysis of the code in assembly language, and a tool for detecting the similarity is designed.
This paper has been studied on the prevent of "program reproduce" and "partial modification" in computer programming. The system is made for the improvement for the prevention of prevailing "program reproduce" and "program partial modification", this research will be helpful to the student who is interested in depth study programmer. The research using AST will do the work such as finding errors of program and will evaluate how much each program is similar to each other. The research using AST will show you, on the screen, by using pictures how much each programs are assimilated. This system supports all of technique available in various forms on the areas of cyber education at present, cyber university, lecture on demand, electronic library, etc. It is expected that the new system can be contributed to opening the new chapter of computer education.g the new chapter of computer education.
A software montage means information that can be extracted quickly from software and includes inherent characteristics. If a montage is made from well-known programs, we can filter candidates of similar programs among the group of programs based on the montage. In this paper, we suggest software montages based on two characteristics: API calls and strings. To evaluate the proposed montages, we performed experiments to filter candidates of some similar programs to instant messenger programs. From the experiments, we confirmed that the proposed montages can be used as a forensic tool that filters a group of similar programs even when their functions are not known in advance.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.792-795
/
2012
최근 오픈 소스 커뮤니티가 활성화되고 수많은 오픈 소스들이 공개되고 있어서 많은 개발자들이 오픈 소스를 활용하고 있다. 그러나 오픈 소스도 정해진 라이선스 기반으로 공개되므로 오픈 소스를 사용할 때는 반드시 라이선스를 확인해야 한다. 본 논문에서는 안드로이드 앱의 라이선스 위반이나 코드 도용을 확인할 수 있는 방법으로서 안드로이드 앱 사이의 API 메소드 호출 유사도를 측정하는 방법을 제안한다. 원본 프로그램과 도용된 프로그램은 유사한 API 메소드를 사용할 것임을 예상할 수 있기 때문에 API 메소드 호출이 유사한 것을 확인하면 간접적으로 코드 도용을 확인할 수 있다. 본 논문에서 개발한 API 유사도 측정 도구는 안드로이드 앱의 소스 코드를 필요로 하지 않고, 안드로이드 달빅(Dalvik) 바이트 코드로부터 직접 API 호출 명령어를 분석하여 유사도를 측정한다는 특징이 있다. 본 논문에서 구현한 도구의 평가를 위해서 API 호출 유사도 비교 실험을 수행하였다. 그 결과, 실제로 API 호출 유사도가 높았던 두 앱이 서로 공통된 모듈을 포함하고 있음을 밝혀내었다. 그리고 선행 연구에서 제안했었던 안드로이드 달빅 코드 전체에 대한 유사도 비교 도구보다 비교 속도가 35% 정도 향상된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.