The Transactions of the Korea Information Processing Society
/
v.7
no.12
/
pp.3866-3873
/
2000
In this paper, we investigates the long-term memory and the Correct answer rate of the foreign exchange data (Yen/Dollar) that is one of economic time series, There are many cases where two kinds of fractal dimensions exist in time series generated from dynamical systems such as AR models that are typical models having a short terrr memory, The sample interval separating from these two dimensions are denoted by kcrossover. Let the fractal dimension be $D_1$ in K < $k^{crossover}$,and $D_2$ in K > $k^{crossover}$ from the statistics mode. In usual, Statistic models have dimensions D1 and D2 such that $D_1$ < $D_2$ and $D_2\cong2$ But it showed a result contrary to this in the real time series such as NIKKEL The exchange data that is one of real time series have relation of $D_1$ > $D_2$ When the interval between data increases, the correlation between data increases, which is quite a peculiar phenomenon, We predict exchange data by neural networks, We confirm that $\beta$ obrained from prediction errors and D calculated from time series data precisely satisfy the relationship $\beta$ = 2-2D which is provided from a non-linear model having fractal dimension, And We identified that the difference of fractal dimension appeaed in the Correct answer rate.
Fault gouge samples were collected from the fault cores of the boundary faults between the Cretaceous Basement and the Tertiary Waeup Basin. Fractal dimensions (D) were obtained by using survivor grains which were analysed from six thin sections of the gouges under the optical microscope. The elliptical survivor grains show a shape preferred orientation almost parallel to clay foliation in matrix, suggesting that it was formed by the rotation of the survivor grains in abundant fine-grained matrix during repeated fault slips. The size distributions of the survivor grains follow power-laws with fractal dimensions in the 2.40-3.02 range. D values of all samples but one are higher than a specific D value equal to 2.58 which predicts the self similarity of fragmentation process in constrained comminution model (Sammis et al., 1987), which indicates large fault slip and multiple faulting. Probably the higher D values than 2.58 mean the non-self-similar evolution of cataclastic rocks where fragmentation mechanism changed from constrained comminution to the grain abrasion accompanying selective fracture of larger grains.
This paper suggests techniques to enhance coding time which is a problem in traditional fractal compression and to improve fidelity of reconstructed images by determining fractal coefficient through adaptive selection of block approximation formula. First, to reduce coding time, we construct a linear list of domain blocks of which characteristics is given by their luminance and variance and then we control block searching time according to the first permissible threshold value. Next, when employing three-level block partition, if a range block of minimum partition level cannot find a domain block which has a satisfying approximation error, There applied to 24-bpp color image compression and image techniques. The result did not occur a loss in the image quality of the image when using the encoding method, such as almost to the color in the YIQ image compression rate and image quality, such as RGB images and showed good.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.5D
/
pp.895-907
/
2006
In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real terrain with only a few information about base terrain, which can produce almost complete geographic information. The area of the model is set to $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, $1,200m{\times}1,200m$ to compare the real data with the data of the existing interpolation method and FEDISA model. By statistical verification of the results, the adaptability and efficiency of FEDISA model are investigated. It seems that FEDISA model will help a lot to obtain the terrain information about the changed terrain, such as the bottom of reservoirs and dams as well as large amount of destruction due to cutting and banking.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.426-429
/
2011
광범위한 지형을 배경으로 하는 게임과 같은 실시간 시뮬레이션 시스템에서 사실적 표현을 높이는 중요한 요소 중 하나가 나무와 같은 자연물 표현이다. 하지만 시스템에 적합한 나무 모델을 매번 새롭게 제작하고 표현하는 일은 다소 어려움이 따른다. 본 연구는 이러한 문제를 해결하기 위하여 실시간 시스템에 적합한 다양하고 사실적인 나무를 모델링하는 방법을 설계한다. 이는 프랙탈 기반의 재귀적 계층 구조를 바탕으로 가지 성장의 자기조직화 처리를 결합하여 나무 성장 과정을 단순화시킴으로써 실시간 시스템에서 직관적이고 효율적으로 활용가능하게 한다. 또한 다양한 나무 모델을 자연스럽게 생성할 수 있도록 인터렉티브 제어 요소를 정의함은 물론 실시간 시스템 내 많은 수의 복잡한 나무 모델을 효율적으로 렌더링하기 위한 GPU를 기반으로 한 가지 표면에 대한 LOD 설정과 인스턴싱 방법을 추가하여 그 결과를 함께 보인다.
The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.
A new fragmentation model, called the GRS (the generation model of weathered residual soils) model, was proposed in this study, This model could identify the formation of a residual soil. This model is based on the phenomena that as the soil was weathered more highly, soil particles were smaller and pores were more expanded simultaneously. The possibility of fragmentation, $P_F,$ which was based on the fractal theory, was introduced in this model. There were some fundamental notions in the GRS model that soil particles were generated as the rock is fragmented, and the fragmentation of the rock was performed step by step. The $P_F,$ of the rock was not constant at each fragmentation steps. As a result of application on the GRS model, there were more residue where $P_{Fi}s$ were small at any particle size. There was a S-shape of PSD curve at the concave shape of $P_{Fi},$ and the PSD curve goes to a gaped graded curve at the convex shape of $P_{Fi}.$ The shape of PSD curve was concave in the case of small $P_{Fi}s.$ The value of $P_{Fi}$ increased with the coefficient of uniformity $(C_u)$ and the fragmentation fractal dimension $(D_r),$ but had no relation with the coefficient of gradation $(C_C)$.
Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
Journal of Korean Tunnelling and Underground Space Association
/
v.24
no.4
/
pp.341-353
/
2022
Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.
We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.
Ground-penetrating radar (GPR) enables rapid data acquisition over extensive areas, but interpreting the obtained data requires specialized knowledge. Numerous studies have utilized numerical analysis methods to examine GPR signal characteristics under various conditions. To develop more realistic numerical models, the heterogeneous nature of the ground, which causes clutter, must be considered. Clutter refers to signals reflected by objects other than the target. The Peplinski material model and fractal techniques can simulate these heterogeneous characteristics, yet there is a shortage of research on the necessary input parameters. Moreover, methods for quantitatively evaluating the similarity between field and analytical data are not well established. In this study, we calculated the autocorrelation coefficient of field data and determined the correlation length using the autocorrelation function. The correlation length represented the temporal or spatial distance over which data exhibited similarity. By comparing the correlation length of field data with that of the numerical model incorporating fractal weights, we quantitatively evaluated a numerical model for heterogeneous ground. Consequently, the results of this study demonstrated a numerical modeling technique that reflected the clutter characteristics of the field through correlation length.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.