• Title/Summary/Keyword: 풍황 자원

Search Result 32, Processing Time 0.015 seconds

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

Development of IoT-Based Disaster Information Providing Smart Platform for Traffic Safety of Sea-Crossing Bridges (해상교량 통행안전을 위한 IoT 기반 재난 정보 제공 스마트 플랫폼 개발)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2023
  • Jeollanam-do has 25 land-to-island and island-to-island bridges, the largest number in Korea. It is a local government rich in specialized marine and tourism resources centered on the archipelago and the sea bridges connecting them. However, in the case of sea-crossing bridges, when strong winds or typhoons occur, there is an issue that increases anxiety among users and local residents due to excessive vibration of the bridge, apart from structural safety of the bridge. In fact, in the case of Cheonsa Bridge in Shinan-gun, which was recently opened in 2019, vehicle traffic restrictions due to strong winds and excessive vibrations frequently occurred, resulting in complaints from local residents and drivers due to increased anxiety. Therefore, based on the data measured using IoT measurement technology, it is possible to relieve local residents' anxiety about the safety management of marine bridges by providing quantitative and accurate bridge vibration levels related to traffic and wind conditions of bridges in real time to local residents. This study uses the existing measurement system and IoT sensor to constantly observe the wind speed and vibration of the marine bridge, and transmits it to local residents and managers to relieve anxiety about the safety and traffic of the sea-crossing bridge, and strong winds and to develop technologies capable of preemptively responding to large-scale disasters.