• Title/Summary/Keyword: 풍화토양

Search Result 243, Processing Time 0.021 seconds

Heavy Metal Contamination of Soil by Wash Water of Ready Mixed Concrete (레미콘 세척수에 의한 토양의 중금속 오염)

  • Oh, Se-Wook;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • Generally, ready-mixed concrete(RMC) gets hardened by time, so the remaining concrete in the drum should be cleaned. But if the RMC waste water generated from this is discharged to soil without any treatment, the strong alkaline elements and heavy metals affect water and ecosystem pollution. Although about 10 to 15% of water used for cleaning in the RMC factory is discharged to soil or river, the concrete report of this affecting soil pollution has not been sufficient. Hence, in this study it was analyzed the extraction of cleaning water from RMC factories all over the country and heavy metal and pH components remaining in soil when this is penetrated to various soils having water permeability. The specimens used for the experiment are weathering soil and soils having different particle size, and it is made to be penetrated to those for 24 hours while fixed thickness of the layer is maintained. Cleaning water is divided into that before deposition treatment(sludge water) and that after deposition treatment(upper water) to be penetrated into soil, and according to the result of penetrating sludge water to soil, Cu and Mn, Fe, and Zn were found to be remained over 23 to 90%. However, it is analyzed that in upper water having deposition treatment, Cu and Mn remain as 60% or more only in weathering soil.

Effect of Rainfall Intensity, Soil Slope and Geology on Soil Erosion (토양침식에서의 강우특성, 토양경사 및 지질의 영향)

  • Nam, Koung-Hoon;Lee, Dal-Heui;Chung, Sung-Rae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.69-79
    • /
    • 2014
  • This study aims to elucidate the relative importance of geological characteristics, soil slope, and rainfall intensity in relation to soil erosion. To this end, indoor rainfall simulation experiments were carried out under different conditions of rainfall intensities, soil slope, and geological characteristics. The test results show that the factors affect soil erosion in the order of soil slope > rainfall intensity > organic content in the soil. Erosion rates were proportional to rainfall, and increase with increasing clay content. Therefore, the soil erosion rate increases strongly with increasing organic content and clay content. The results show that the soil erosion rate in areas of metamorphic rocks shows a marked increase compared with areas of steep slope and sedimentary rocks. These results indicate that the geological characteristics to produce soil are closely related to sedimentation before and after erosion, providing basic information for the development of models to predict soil erosion rates.

Heavy Metal Concentration of Soils and Plants in Baekdong Serpentinite Area, Chungnam - A Case of Pinus densiflora and Pinus rigida - (충남 백동 사문암지역의 토양 및 식물체내 중금속 함량 - 소나무 및 리기다소나무를 중심으로 -)

  • 민일식;송석환;김명희;장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1998
  • Heavy metal concentrations in rocks and soils from serpentinite(SP) and in plants (Pinus densiflora: PD and Pinus rigida: PR) were examined at Baekdong mine in Hongsung, Chungnam. Parent rocks were compared with amphibole schist(AS) and gneiss(GN) and plants divided the above grounds and roots were examined, respectively. In rocks, Ni, Cr, Co, Fe concentrations in SP were higher than those in AS and GN. The concentrations of top soils had the similar differences to their rocks; especially Ni, Cr, Co, Fe concentrations were the highest in SP, Zn and Sc concentrations, however, were the highest in AS. Average Ni, Cr, Co, Au, As, Sb, W concentrations of PD were the highest in SP and especially Ni, Cr, Co concentrations were accorded with changes of rocks and top soils. Zn and Sc concentrations in AS were higher and Fe and Mo concentrations in GN were higher than those in SP. Compared with two plants in the same serpentinite sites, most elements of PR were higher than those of PD. Therefore, these suggested PR absorbed much heavy metal than PD. Most element concentrations of roots in two plants and three rocks were higher than those of the above ground. Relative ratios (average plant concentration/soil concentration) of Ni, Cr, Co, Zn, Sc, Fe in AS and GN were higher than those of SP. Especially, relative ratios of most elements except Zn in GN were the highest.

  • PDF

Properties and Provenance of Loess-paleosol Sequence at the Daebo Granite Area of Buan, Jeonbuk Province, South Korea (전북 부안 화강암지역 뢰스-고토양 연속층의 퇴적물 특성과 기원지)

  • Park, Chung-Sun;Hwang, Sang-Ill;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.898-913
    • /
    • 2007
  • We examined soil properties and provenance of loess-paleosol sequences at the Daebo Granite area of Buan, Jeonbuk Province, South Korea. The section consists of the surface layer, Layer 1(paleosol), Layer 2(loess), Layer 3(paleosol), Layer 4(loess), and Layer 5(paleosol), from top to bottom and thickness of the exposed section is approximately 280cm. The magnetic susceptibility values show the distinct variations between the loess- and the paleosol layer. Even though pH, ORP, water content, and soil hardness do not display the obvious differences in the section, the organic content indicates the variation similar to those of the magnetic susceptibility. In the respect of the soil colors measured under 3 conditions, although the variations of the wet soil color exceedingly reflect the difference of the layers, these variations are obscure in some points in the section due to the characteristics of the Munsell color system. Based on the geomorphological properties, sedimentary structure, the difference of the major element composition and the condrite-normalized rare earth element(REE) patterns showing the clear difference from the adjacent bedrocks and stream sediments and the similarity to those of the Chinese Loess Plateau, it is suggested that the section was formed by the material originated from the Chinese Loess Plateau and peripheral areas. However, because the material experienced the alteration after sedimentation under the environment of the sediment area, it has the properties different from the material in the provenance areas. This phenomenon may result in the climatic condition of Korea, especially in precipitation.

Environmental Geological Characteristics of Suspended Matter and Turbidity Water at Gachang Dam in 2004 (2004년 가창댐 탁수의 원인과 부유물질의 환경지질학적 특징)

  • Choo Chang-Oh;Koh Eun-Young;Oh Soo-Jiu;Lee Seong-Woo;Kim Byoung-Ki;Lee Ji-Eun;Kim Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.49-61
    • /
    • 2006
  • This study was undertaken to investigate the origin of suspended matter to induce turbidity water in Gachang dam in view of environmental geology. During the period from May to August 2004, field works and sampling were carried out three times at the dam and along its streams, and chemical and mineralogical analyses such as ICP, IC, particle size analyzer, XRD and SEM were made on water, soil and suspended matter in water. Electrical conductivity (EC), turbidity, the contents of cation and anion increase from upstream toward the dam mostly due to the geological factors such as weathring of the rocks causing the increase of the total ion content. Vermiculite, illite, kaolinite, quartz, feldspar and iron hydroxide are commonly found in suspended matters in water and soils. Finer particles (d10) in soil increase slightly toward downstream and the vermiculite content is highest in the dam water. Since geological differences are not significant, mineralogy are similar in suspended matters and soils. Clay mineral compositions present in suspended matters were alsmost the same as those in soils, indicating the origin of soils by weathering of host rocks and being transported to the dam by stream water.

Genesis and Mineralogical Characteristics of Acid Sulfate Soil in Gimhae Plain -II. Genesis and Distribution of the Soil Clay Minerals (김해평야(金海平野)에 분포(分布)한 특이산성토(特異酸性土)의 생성(生成)과 광물학적(鑛物學的) 특성(特性) -II. 점토광물(粘土鑛物)의 분포(分布) 및 생성(生成))

  • Jung, Pil-Kyun;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.168-178
    • /
    • 1994
  • Acid sulfate soils occur extensively in Gimhae area where they have been formed from the brackish alluvial sediments along the sea coast and river estuary. The strong acid environment enhances silicate weathering and thus affects the soil clay minerals. The minerals were identified through chemical, X-ray diffraction and thermal methods. The ratio of $SiO_2$ and $Al_2O_3$ in the clay fractions ranged from 3.14 to 3.77, indicating that the distribution of the clay minerals were 1 : 1 and 2 : 1 minerals. Cation exchange capacity in the clay fractions was low due to high contents of 1 : 1 minerals and hydroxy interlayered vermiculite(HIV). The B and C horizon rich in jarosite have large amounts of yellow streaks which reflect high content of $Fe_2O_3$ and $K_2O$. Vermiculite and illite were quantified from thermogravimetry(TG), kaolin minerals from both TG and differential thermal analysis(DTA), and HIV from X-ray diffraction analysis. The dominant clay minerals were kaolin minerals, vermiculite, illite and HIV. HIV considered to be formed, especially, in acid soil environments. The minor minerals were quarts, feldspar, jarosite, pyrite, hematite and goethite. Kaolin minerals were the most abundant clay minerals throughout the acid sulfate soil. Kaolin minerals, however, increased towards the top of horizons throughout the soils and HIV decreased towards the top of horizons in the soil of Gimhae series and Haecheog series. Alteration of HIV to kaolin minerals during weathering of low pH condition in deep soil horizons may explain the high quantities of kaolin minerals and the relatively low quantities of HIV in the soil at top horizons.

  • PDF

Amorphous Silica in Soil Silt (토양 실트의 비정질 실리카)

  • Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • Amorphous silica ($SiO_2$) silt grains were found in some soils of Korean Peninsula. Scanning electron microscopy of polished section of soils revealed ellipsoidal amorphous $SiO_2$ grains with numerous submicron pores concentrated in the interior. Their amorphous structure was confirmed by lattice imaging and electron diffraction under transmission electron microscope. Amorphous $SiO_2$ grains were not found in the eolian sediment of the Chinese loess plateau. Although the origin of the amorphous $SiO_2$ grain is uncertain, they are likely either phytolith or weathering product of volcanic ash. The amorphous $SiO_2$ silt grains are not useful as a tracer of long-range transport mineral dust in soils.

Penetration of Weathered Oil and Dispersed Oil and its Ecological Effects on Tidal Flat - as Infiltration of Dissolved Matter - (유출된 풍화유와 분산유의 조간대 침투 및 생태계 영향 - 용존상 물질의 침투량 변화 -)

  • Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.134-139
    • /
    • 2005
  • The purpose of this study is to quantify the penetration behavior of spilled weathered oil and dispersed oil and to evaluate the influence of the penetrated oils on seawater infiltration in tidal flat environment. The penetration depths of the spilled oils into the tidal flat sediments were gradually deeper according to increase the stranded oil volume. The penetration depth of stranded oil were abruptly dropped at first falling tide, but were not significantly fluctuated after that. Moreover, hydrocarbon concentration was most high within the upper 2 cm. Seawater infiltration was decreased in proportion to the stranded oil volume. Dispersed oil was easily permitted the seawater infiltration than weathered oil and crude oil. Therefore, quick cleaning actions fur penetrated oil will be required far recovery of seawater infiltration, because the seawater contains oxygen and nutrients required for the survival of benthic organisms in tidal flat.

  • PDF

Mineralogical Change of Acid Sulfate Weathering of Hydrothermally Altered Pyritic Andesite (열수변질 안산암 기원의 함황광물과 특이산성토적 풍화에 따른 광물학적 변화)

  • Kim, Jae-Gon;Jung, Pil-Kyun;Yun, Eul-Soo;Jung, Yeun-Tae;Hyon, Geun-Soo;Zhang, Yongsun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.115-120
    • /
    • 2000
  • Oxidation of pyrite has caused a serious environmental problem such as the acidification of soil and surface water. The mineralogical change of acid sulfate weathering of hydrothermally altered andesite which contained 11.8% of pyrite and was exposed in atmosphere by lay out works for a residential area and a golf course was studied using X-ray diffraction (XRD) and electronmicroscopes. Ferrihydrite, jarosite, and an unidentified water soluble phase were observed as weathering products of the andesite. Under electronmicroscopes, showed aggregate of platy microcrystals; jarosite was platy morphology: water soluble Phase was columnar. Morphology of fresh Pyrite in the andesite changed from pyritrohedron to cubic in its frequency with increasing its particle size. The drainage water was acidic (pH 3.5) and in an equilibrium state with both ferrihydrite and jarosite.

  • PDF

Characteristics and depositional environment of paleosol layers developed on top of the terrace in the Jeongdongjin area, East Coast, Korea (강릉 정동진 지역 단구 고토양층의 특징과 퇴적 환경)

  • Yi, Seon-Bok;Lee, Yong-Il;Lim, Hyun-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.1-24
    • /
    • 2009
  • Paleosol layers lying on top of the terrace in Jeongdongjin area appear to have been deposited under generally well-drained condition with periodic waterlogging. From a 4.5m-long profile observed, a total of 6 stratigraphic units were identified. Grain-size analysis indicates the dominance of silty and clay materials with some portions with high sand content. Major mineralogical elements are quartz, feldspar, mica and chlorite. Geo-chemical composition shows little change throughout the stratigraphy with some fluctuation in chemical weathering index. Marked increase in magnetic susceptibility is recognizable where stratigraphic unit changes. Soil- wedge layer is developed around 50cm below the surface with concentration of grains of AT tephra (c. 25,000 BP). An OSL date of c. 110,000 BP was obtained from a sand layer lying below the paleosol.

  • PDF