• Title/Summary/Keyword: 풍수량

Search Result 104, Processing Time 0.028 seconds

A Study about Establishing the Disaster Prevention Village and Management System (방재마을 구축 및 운영방안에 관한 연구)

  • Lee, Ji-Hyang;Shin, Ho-Joon;Back, Min-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.187-187
    • /
    • 2011
  • 방재마을 구축 및 운영은 구조적 및 비구조적 재해예방사업을 통하여 지역의 전체적인 방재능력을 향상시키는 것을 기본방향으로 방재마을 구축에 따라 구조적 및 비구조적 컨텐츠가 활용된다. 방재마을 조성에 따른 구조적 및 비구조적 사업은 서로 상호보완적으로 작용되며, 이를 통해 각각의 재해유형과의 연계 및 컨텐츠 제시로 방재력향상을 도모한다. 현재 도시화로 인해 풍수해 발생시 우수유출량 증가로 침수피해 위험이 가중되고 있다. 이에 도시가 돌발성 집중강우에 의한 도시형 침수로부터 주민의 인명과 재산을 보호하기 위해 우수를 신속하게 저류시켜 우수유출량을 줄이는 대책을 수립해야 하며, 풍수해에 대비한 방재마을 구축 컨텐츠 및 운영방안에는 하천정비 및 하도개수, 하수도 정비 및 확충, 홍수조절, 저류지설치, 우수저류 및 우수침투시설 설치 등이 있다. 방재마을 운영 및 활성화를 위한 비구조적 사업은 재해예방을 위한 주민 기업 단체자구노력, 풍수해 예방주민활동, 침수피해 주민예방 활동, 지역자율방재단 운영, 주민주도의 추진체계 구축 등이 있다. 성공적인 방재마을만들기를 위해서는 주민주도의 추진체계를 확립하도록 하는 것이 무엇보다 중요하며, 방재마을에 있어 주민참여가 방재도시만들기와 밀착되어 전개될 때 방재마을의 운영 및 관리 효과가 향상된다. 따라서 구조적 운영방안과 함께 주민추진체계를 중심으로 한 방재마을 구축 및 운영을 통해 방재마을 활성화를 도모할 수 있을 것으로 사료된다.

  • PDF

Estimation of Annual Power Generation by Long-Term Runoff Simulation for Potential Dam Development Site in North Korea (북한지역 댐 개발 가능유역에 대한 장기유출 모의를 통한 연간발생전력량 추정)

  • Kwon, Minsung;Ahn, Jae-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.196-196
    • /
    • 2018
  • 북한의 에너지 공급은 석탄과 수력 위주로 구성되어 있지만, 수력이 북한 발전량의 약 63%를 차지할 만큼 비중이 높다. 북한은 지리적으로 수력발전 개발에 많은 이점을 가지고 있는 만큼 북한 수자원 개발 사업에 진출하거나, 통일을 대비하기 위해 댐 개발 가능지역에 대한 검토가 필요하다. 본 연구에서는 댐 개발이 가능한 북한지역의 33개 유역에 대해 SWAT 모형을 활용하여 장기유출 모의를 수행하였다. 북한지역에 대한 직접적인 자료 획득이 어려운 현실에서 장기유출 모의를 위해 수치표고자료는 일본우주항공연구개발기구(JAXA)에서 제공하는 30 m DEM을 활용하였으며, 기상자료는 북한이 세계기상기구(WMO)에 제공한 자료를 이용하였고, 토지이용 및 토양 자료는 WaterBase에서 제공하는 자료를 활용하였다. 1988년부터 2017년 까지 30년간의 일 유출량을 모의하였으며, 연간발전가능량 계산을 위한 사용수량은 해당 유역의 풍수량을 사용하였으며, 수차효율과 발전기효율의 합성효율은 댐 설계기준에서 제시한 계획단계의 85%를 적용하였다. 유효낙차와 발전능률은 기존 연구에서 제시한 92%와 66%를 적용하였다. 본 연구에서 추정한 북한 지역의 개발 가능한 댐의 연간발생전력량은 향후 수자원분야의 북한 진출을 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

An Evaluation of Fish Habitat Conditions due to the Construction of Youngchun Dam in the Gumbo River (영천댐 건설이 금호강의 어류 서식환경에 미치는 영향에 관한 평가)

  • Park, Bong-Jin;Sung, Young-Du;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.771-778
    • /
    • 2005
  • In this study, flow duration analysis was conducted at the Gumbo stage gauging station due to construction of the Youngchun dam. The flow duration characteristics were $10.49\;m^3/s$ of drought flow, $13.30\;m^3/s$. of low flow, $15.65\;m^3/s$ of normal flow, and $25.00\;m^3/s$ abundant flow before construction of Youngchun dam. But after construction of Youngchun dam, the flow duration characteristics were $2.07\;m^^3/s,\;2.89\;m^3/s,\;4.0\;m^3/s,\;9.36\;m^3/s$ and they had been deteriorated. Applying the Physical Habitat Simulation Model by Instream Flow Incremental Methodology, the Weighted Usable Area(WUA)-Discharge Curve was developed for Zacco Platypus according to the growth stages. Using the WUA-Discharge Curve, the WUA Duration Curve was developed with exceedance probability of daily flow and evaluated fish habitat conditions due to the construction of Youngchun dam. As an evaluation result, the WUA was reduced and fish habitat environment was deteriorated due to the construction of Youngchun dam during the spawning and growth period of Zacco Platypus. However the exceedence probability of the $90\;\%$, irrigation water supply from the Youngchun dam improved flow duration characteristics and Weighted Usable Area as well as fish habitat.

Long-Term Runoff Simulation in Consideration of Snow Pack and Snow Melt (적설 및 융설의 영향을 고려한 장기유출 모의)

  • Kim, Dae Geun;Jeong, Jae Ung;Park, Jae Hyun;Park, Chang Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.265-272
    • /
    • 2007
  • This study uses the SWAT model to analyze the characteristics of long-term runoff at the Ssang-cheon Basin located in the city of Sokcho, which is located in the province of Gangwon. The study considers the effect of snow packing and snow melting in a runoff simulation. In this simulation, the study examines the need to introduce a snow pack and snow melt model to evaluate the water resources of the mountainous region of the Gangwon province. The findings of this study indicate that the runoff hydrograph that was produced approximates the true measured flow when the effect of the snow pack and snow melt are considered, compared to when they are not factored in. The analysis of the flow duration curve indicates that the stream flow largely increases when the effect of the snow pack and snow melt are considered. The wet stream flow was shown to increase by nearly 3% due to the melting effect, while the normal stream flow, low stream flow and drought stream flow were shown to increase by slightly more than 10%. Specifically, it was found that as the stream flow decreases, the effect of the snow pack and snow melt on the stream flow increases.

Assessment of Influx Efficiency at By-Pass Fishway Using Two-Dimensional Physical Habitat Simulation Model -Focused on Zacco Platypus- (인공하도식 어도에서 2차원 물리서식처 모형을 이용한 어류 유입 효율 평가 -피라미를 대상으로-)

  • Baek, Kyong Oh;Park, Ji Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.629-642
    • /
    • 2013
  • In this study, the efficiency of the by-pass fishway installed at Kangjung-Goryong Weir in Nakdong River was assessed by using River2D which is a two-dimensional physical habitat simulation model. The model was calibrated and validated through the measured water elevation. The assessment was performed according to flow condition such as flood, normal, and low flow. Especially the low flow condition was focused on because the target fish, Zacco Platypus, have moved frequently up and downstream at the spawning season from April to June. From simulation results, it can be deduced that the influx efficiency and the passage efficiency of the fishway in the low flow is higher than that in the flood and normal flow due to occurrence of proper velocity at fishway entrance.

Assessing the Sensitivity of Runoff Projections Under Precipitation and Temperature Variability Using IHACRES and GR4J Lumped Runoff-Rainfall Models (집중형 모형 IHACRES와 GR4J를 이용한 강수 및 기온 변동성에 대한 유출 해석 민감도 평가)

  • Woo, Dong Kook;Jo, Jihyeon;Kang, Boosik;Lee, Songhee;Lee, Garim;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.43-54
    • /
    • 2023
  • Due to climate change, drought and flood occurrences have been increasing. Accurate projections of watershed discharges are imperative to effectively manage natural disasters caused by climate change. However, climate change and hydrological model uncertainty can lead to imprecise analysis. To address this issues, we used two lumped models, IHACRES and GR4J, to compare and analyze the changes in discharges under climate stress scenarios. The Hapcheon and Seomjingang dam basins were the study site, and the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) were used for parameter optimizations. Twenty years of discharge, precipitation, and temperature (1995-2014) data were used and divided into training and testing data sets with a 70/30 split. The accuracies of the modeled results were relatively high during the training and testing periods (NSE>0.74, KGE>0.75), indicating that both models could reproduce the previously observed discharges. To explore the impacts of climate change on modeled discharges, we developed climate stress scenarios by changing precipitation from -50 % to +50 % by 1 % and temperature from 0 ℃ to 8 ℃ by 0.1 ℃ based on two decades of weather data, which resulted in 8,181 climate stress scenarios. We analyzed the yearly maximum, abundant, and ordinary discharges projected by the two lumped models. We found that the trends of the maximum and abundant discharges modeled by IHACRES and GR4J became pronounced as changes in precipitation and temperature increased. The opposite was true for the case of ordinary water levels. Our study demonstrated that the quantitative evaluations of the model uncertainty were important to reduce the impacts of climate change on water resources.

Planning for Securing Instreamflow of Gapcheon Stream in Daejeon (대전 갑천의 유지유량 확보 방안)

  • Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.87-98
    • /
    • 2009
  • The objective of this study is to evaluate the effect of increasing instream flow at Gapcheon stream of Daejeon city by considering two virtual reservoirs upstream, respectively; Geum-gok reservoir and Koe-gok reservoir upstream, respectively. The paralleled and cascaded reservoir operations were performed including the existing Jang-an and Bang-dong reservoirs. The results are summarized as follows. Firstly, from the Bang-dong and Geum-gok cascaded reservoir's water balance analysis, instream flow of $6.83Mm^3$ was able to be supplied to downstream, and water supply indexes of Geum-gok reservoir were analyzed to have the rate of water supply divided by watershed area of 403.4 mm, the rate of water supply divided by rainfall of 33.0 %, the rate of water supply divided by inflow of 96.4 %, the rate of water supply divided by storage capacity of 81.9 %, and the rate of inflow divided by storage capacity of 112.3 %. Secondly, from the Jang-an and Geum-gok paralleled reservoir's water balance analysis, flow durations at Gapcheon station were analyzed to have Q95 (the 95th high flow) of $4.806m^3/s$, Q185 (the 185th high flow) of $2.217m^3/s$, Q275 (the 275th high flow) of $1.140m^3/s$, and Q355 (the 355th high flow) of $0.887m^3/s$. Thirdly, inflow to Koe-gok reservoir was simulated including the Jang-an and Bang-dong paralleled reservoir's water balance analysis, instream flow of $49.60Mm^3$ was able to be supplied from Koe-gok reservoir to downstream, and water supply indexes of Koe-gok reservoir were analyzed to have the rate of water supply divided by watershed area of 246.5 mm, the rate of water supply divided by rainfall of 19.4 %, the rate of water supply divided by inflow of 40.8 %, the rate of water supply divided by storage capacity of 412.1 %, and the rate of inflow divided by storage capacity of 1,189.8 %. Fourthly, daily streamflows at Gapcheon stream were simulated including outflows from Koe-gok reservoir, flow durations at Gapcheon station were analyzed to have Q95 (the 95th high flow) of $4.501m^3/s$, Q185 (the 185th high flow) of $2.277m^3/s$, Q275 (the 275th high flow) of $1.743m^3/s$, and Q355 (the 355th high flow) of $1.564m^3/s$. The conclusion appeared that the effect of increasing instream flow at Gapcheon stream from Koe-gok reservoir was more higher than that from Geum-gok reservoir.

  • PDF

Applicability Evaluation of Graphical Methods for Base Flow Separation from Stream Flow by Case Study (도식적 기저유출 분리 기법의 사례 적용을 통한 적용성 평가)

  • Kang, Taeuk;Leek, Nam-joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.335-335
    • /
    • 2020
  • 기저유출 분리 기법은 하천에서 관찰되는 총 유출을 직접유출과 기저유출로 분리하는 기술이다. 기저유출 분리 기법은 도식적(graphical) 방법, 디지털 필터(digital filter) 방법, 통계학적 방법, 해석적 방법 등 다양하다(Valent와 Bulík, 2016). 금회 연구에서는 이 가운데 도식적 방법을 이용한 기저유출 분리 방법에 대한 적용성을 평가하였다. 금회 연구에서 수행된 도식적 기저유출 분리 방법은 HYSEP 프로그램에 포함되어 있는 local minimum method(LMM), fixed interval method(FIM), sliding interval method(SIM)이고(Sloto and Crouse, 1996), 각각의 방법은 대리 수위관측소의 관측 일 유량(2013년~2017년)에 적용되었다. 분석에 사용된 세 가지 방법은 동일하게 유역면적의 함수인 기저유출 분리에 사용되는 간격(2N∗)만으로 기저유출을 분리하므로 객관적인 적용이 가능하다. 각각의 분석 방법에 의한 기저유출 분리의 적절성 평가를 위해 2017년의 유황곡선을 이용하여 검토하였다. 구체적으로 유황 곡선의 지표 유량인 풍수량, 평수량, 저수량을 기준으로 각각의 지표 유량 이하에 대한 관측 유량과 추정된 기저유량의 결정계수를 산정하였다(Table 1). 이는 유량의 규모가 작을수록 지표유출 보다는 기저유출의 영향이 커짐을 고려한 것이다. 분석 결과, SIM이 모든 지표 유량 기준에서 가장 좋은 결과를 보였다. 또한, 기저유출 지표(base flow index; BFI)에서도 SIM과 FIM은 약 0.46으로 유사한 반면, LMM은 0.23으로 분석되어 두 방법과 큰 차이를 보였다.

  • PDF

Statistical Analyses of Long-Term Water Quality Variation in the Geumgang-Reservoir: Focused on the TP Load by Migrating Birds Excrement (금강호의 장기 수질 변화요인 분석: 철새배설물에 의한 TP부하의 중요성)

  • Jeong, Yong-Hoon;Kim, Hyun-Soo;Yang, Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.223-233
    • /
    • 2010
  • Spatio-temporal variations of long-term water qualities (COD, SS, $Chl-{\alpha}$, N-related nutrients (TN, TDN, $NO_3^-$, $NH_4^+$), P-related nutrients (TP, TDP, $PO_4^{3-}$)) at two stations (St. SD, St. GG) in the Geumgang Reservoir were investigated from August 2001 to July 2008. Statistical methods such as t-test, factor analysis, and multi-regression analysis were applied to the water quality data in the reservoir as well as mass balances on TP. From the temporal comparisons of the water qualities between 2002 and 2007, average concentrations of $NH_4^+$, $PO_4^{3-}$, and TDP gradually decreased down by 60%, 24%, 52% in 2007. However, those of TP and $Chl-{\alpha}$ increased to 99% and 423% during the period. From the spatial comparisons between the two stations, St. GG showed higher concentrations for all of the N- and P-related nutrients than in St. SD, while opposite result for the $Chl-{\alpha}$. The factor analysis showed that "the seasonal variations of N- and P-related nutrients" were the two dominant factors occupying 49% of total variances of water qualities. Based on this result, multi-regression analysis executed for the two most influential parameters (TP and $Chl-{\alpha}$) focusing on the seasonal variations of these parameters: SS and $Chl-{\alpha}$ has contributed decisively to the concentrations of TP during the wet and dry season, respectively. On the other hand, COD and TP has been important for the $Chl-{\alpha}$ during the wet and dry season, respectively. From the established mass balances of TP loadings in the Geumgang Reservoir, Other Sources (60%) occupied the greatest contribution and Fluvial Input (38%) and Sediment (1%) during the wet season. However, both Fluvial Water (48%) and Other Sources (47%) supplied comparable amount of inputs and Sediment (5%) showed significantly increased input during the dry seasons. Recently especially during the dry winter seasons, migrating bird's excretion was estimated to contribute up to 8% of total TP input and 21% of Other Sources.

Estimation of Groundwater Recharge from Precipitation in a Small Basin (소유역의 강수에 의한 지하수 함양량 산정)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.397-406
    • /
    • 2004
  • It is necessary to estimate the groundwater recharge rate properly to evaluate the reasonable development amount of groundwater in a specific site. A small basin in Wicheon River Basin located in the Province of Kyungsangbuk-Do is selected to calculate the groundwater recharge rate. Average annual groundwater recharge rates are calculated from 1992 to 1997 because wet and draught year are contained during this period. In the calculation, baseflow separation method and SCS-CN method are applied to this area. As a result of estimation by baseflow separation method, the value of groundwater recharge ratio is varied between 11.9% and 18.7%. The average annual recharge rate is 14.5%. The average annual recharge rate calculated by SCS-CN method is varied between 7.9% and 20.9%. The average annual recharge rate in the calculation period is 15.1%. The results show that the average annual recharge amount from infiltration in the study basin is 141.6mm and 147.4mm in each estimation method. It appears that the average annual recharge amount calculated for the long period containing wet and draught year by the two methods is useful for groundwater development.