• Title/Summary/Keyword: 풍속 예측

Search Result 333, Processing Time 0.023 seconds

Development of Naïve-Bayes classification and multiple linear regression model to predict agricultural reservoir storage rate based on weather forecast data (기상예보자료 기반의 농업용저수지 저수율 전망을 위한 나이브 베이즈 분류 및 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.839-852
    • /
    • 2018
  • The purpose of this study is to predict monthly agricultural reservoir storage by developing weather data-based Multiple Linear Regression Model (MLRM) with precipitation, maximum temperature, minimum temperature, average temperature, and average wind speed. Using Naïve-Bayes classification, total 1,559 nationwide reservoirs were classified into 30 clusters based on geomorphological specification (effective storage volume, irrigation area, watershed area, latitude, longitude and frequency of drought). For each cluster, the monthly MLRM was derived using 13 years (2002~2014) meteorological data by KMA (Korea Meteorological Administration) and reservoir storage rate data by KRC (Korea Rural Community). The MLRM for reservoir storage rate showed the determination coefficient ($R^2$) of 0.76, Nash-Sutcliffe efficiency (NSE) of 0.73, and root mean square error (RMSE) of 8.33% respectively. The MLRM was evaluated for 2 years (2015~2016) using 3 months weather forecast data of GloSea5 (GS5) by KMA. The Reservoir Drought Index (RDI) that was represented by present and normal year reservoir storage rate showed that the ROC (Receiver Operating Characteristics) average hit rate was 0.80 using observed data and 0.73 using GS5 data in the MLRM. Using the results of this study, future reservoir storage rates can be predicted and used as decision-making data on stable future agricultural water supply.

Aggregate Distribution and Wind Erosion in Grass Land of the New Incheon International Airport (인천 신공항 잔디밭 조성지 토양의 입단분포 및 풍식 예측량 산정)

  • Jung, Yeong-Sang;Yoo, Sun-Ho;Choi, Byung-Kwon;Joo, Young-Kyoo;Bang, Jeong-Ho;Park, Chol-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.315-323
    • /
    • 1998
  • Soil aggregate distribution and its relation to wind erosion were examined for the surface soil of the experimental plots for grasses in the New Incheon International Airport, of which soil was reclaimed with sea sands in the Youngjong Island. The soil aggregate with the size between 0.10 and 0.84mm was 74 percents. The 6 percents of the soil aggregates were non-erodible. With this aggregate distribution the wind erodiblity of the soil, I. was $380Mg\;ha^{-1}\;yr^{-1}$ with I value and climatic factor calculated for the dry period from November to May, $45.2Mg\;ha^{-1}\;yr^{-1}$ of the surface soil were estimated to be eroded. The erodible particles with 0.37mm diameter could fly to 17.8, 29.9 and 49.8 meters by saltation at wind speed of 7, 9 and $15m\;s^{-1}$, respectively. The wind erosion could be reduced by increasing vegetation coverage and applying hydrophyllic soil conditioner.

  • PDF

CO2 net atmospheric flux estimation and influence factors analysis in a stratified reservoir (성층화된 저수지에서 CO2 NAF 산정 및 영향 인자 분석)

  • Park, Hyung Seok;Chung, Se Woong;Lee, Eun Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.73-73
    • /
    • 2019
  • 지구 표면의 약 2%에 해당하는 담수에서 육상계 전체가 흡수하는 탄소의 50%가 배출되며, 이는 토양표면에서 배출되는 탄소량에 비해 더 큰 수치로 전 지구적 탄소순환 해석에 중요한 역할을 한다. 특히, 내륙수역과 대기의 경계면에서 $CO_2$ 이동은 전 지구적 탄소순환의 중요한 구성요소로 평가되고 있다. 호수와 저수지 같은 담수 저류시설은 육상에서 기인한 탄소의 운송 및 처리 역할을 한다. 하지만, 저수지에서 온실가스배출량을 평가할 수 있는 명확한 방법론이 부족하며, 전지구 규모 GHGs배출량에 대한 추정에 대한 불확실성이 상당히 큰 상황이다. 본 연구에서는 몬순기후대에 위치한 인공저수지를 대상으로 보다 신뢰도있는 온실가스 배출량 추정을 위해 $CO_2$ NAF 산정하고, 산정에 영향을 미치는 인자들을 분석 하였다. 분석을 위해 $CO_2$ NAF 산정에 필요한 수리 및 수질 인자들을 2017년부터 2018년까지 수집하고, 기초통계량 및 상관분석을 실시하였다. 또한, 주성분분석(PCA) 및 다중선형회귀모델(MLR)과 랜덤포레스트(RF) 기법을 사용해 변수 중요도를 평가하였으며, $CO_2$ NAF 산정 주요인자인 기체교환 계수를 경험적 모델 3종(Cole and Caraco, Crusius, Vachon), 표면갱신형 모델 4종(Heiskanen, Maclntyre, Read, Soloviev)을 비교, 검토하였다. 조사기간 동안 기체교환계수 산정 결과 Crusius 모델 예측값이 평균 $0.342(0.047{\sim}4.323)cm\;hr^{-1}$으로 검토한 모델중 가장 낮은 평균값을 보였으며, Heiskane 모델이 $2.135(0.337{\sim}5.152)cm\;hr^{-1}$으로 가장 큰 평균값을 보였다. 대상 수체는 연주기로 완전혼합되며 수온성층이 약화되는 시기에 저수지 표층 아래에 축적된 탄소가 표층으로 전달되어 높은 수준의 p$CO_2$를 보이며, 수표면에 큰 난류 강도가 작용하는 기간에 대기중으로 배출(pulse emission) 기작이 나타난다. NAF 산정결과 경험적 모델의 NAF값($-1246.0{\sim}6510.3mg-CO_2m^{-2}day^{-1}$)은 표면갱신형 모델 NAF값($-1436.1{\sim}8485.7mg-CO_2m^{-2}day^{-1}$)보다 낮은 수준을 보였으며, 풍속의 함수만을 이용하는 경험적 모델보다 부력 플럭스와 난류 혼합의 영향을 고려하는 Macintyre, Heiskanen모델이 성층 저수지의 $CO_2$ NAF 산정에 적합한 것으로 나타났다. $CO_2$ NAF 산정의 주요인자로 MLR모델은 Tw, EC, pH, Chla, TOC, Alk, RF모델은 EC, DO, TOC가 중요 변수로 평가되었다. PCA 분석결과, 수온이 낮고 성층이 약화되며 pH가 낮은 상태에서 NAF가 큰 것으로 나타났다.

  • PDF

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.

An Experimental Study for the Effect of Operating Condition of the Air Handling Unit on the Performance of Humidifying Elements (공조기 운전 조건이 가습 소자의 성능에 미치는 영향에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.326-331
    • /
    • 2018
  • Evaporative humidification using a humidifying element is used widely for the humidification of a building or a data center. The performance of a humidifying element is commonly expressed as the humidification efficiency, which is assumed to be independent of the air temperature or humidity. To verify this assumption, a series of tests were conducted under two air conditions - data center ($25^{\circ}C$ DBT, $15^{\circ}C$ WBT) and commercial building ($35^{\circ}C$ DBT, $21^{\circ}C$ WBT) - using humidifying elements made from cellulose/PET and changing the frontal air velocity from 1.0 m/s to 4.5 m/s. Three samples having a 100 mm, 200 mm, or 300 mm depth were tested. The results showed that the humidification efficiency is dependent on the air condition. Indeed, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. This suggests that a proper thermal model should account for the inlet area, where the amount of moisture transfer may be different from the other part of the humidification element. As the depth of the element increased from 100 mm to 200 mm, the humidification efficiency increased by 29%. With further increases to 300 mm, it increased by 42%. On the other hand, the pressure drop also increased by 47% and 86%.

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

Effect of the Learning Image Combinations and Weather Parameters in the PM Estimation from CCTV Images (CCTV 영상으로부터 미세먼지 추정에서 학습영상조합, 기상변수 적용이 결과에 미치는 영향)

  • Won, Taeyeon;Eo, Yang Dam;Sung, Hong ki;Chong, Kyu soo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.573-581
    • /
    • 2020
  • Using CCTV images and weather parameters, a method for estimating PM (Particulate Matter) index was proposed, and an experiment was conducted. For CCTV images, we proposed a method of estimating the PM index by applying a deep learning technique based on a CNN (Convolutional Neural Network) with ROI(Region Of Interest) image including a specific spot and an full area image. In addition, after combining the predicted result values by deep learning with the two weather parameters of humidity and wind speed, a post-processing experiment was also conducted to calculate the modified PM index using the learned regression model. As a result of the experiment, the estimated value of the PM index from the CCTV image was R2(R-Squared) 0.58~0.89, and the result of learning the ROI image and the full area image with the measuring device was the best. The result of post-processing using weather parameters did not always show improvement in accuracy in all cases in the experimental area.

Change in Potential Productivity of Rice around Lake Juam Due to Construction of Dam by SIMRIW (벼 생장모형 SIMRIW를 이용한 주암호 건설에 따른 주변지역의 벼 잠재생산성 변이 추정)

  • 임준택;윤진일;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.729-738
    • /
    • 1997
  • To estimate the change in rice productivity around lake Juam due to construction of artificial lake, growth, yield components and yield of rice were measured at different locations around lake Juam for three years from 1994 to 1996. Automated weather stations(AWS) were installed nearby the experimental paddy fields, and daily maximum, average and minimum temperature, solar radiation, relative humidity, and precipitation were measured for the whole growing period of rice. Plant height, number of tillers, leaf area and shoot dry weight per hill were observed from 8 to 10 times in the interval of 7 days after transplanting. Yield and yield components of rice were observed at the harvest time. Simulation model of rice productivity used in the study was SIMRIW developed by Horie. The observed data of rice at 5 locations in 1994, 3 locations in 1995 and 4 locations in 1996 were inputted in the model to estimate the unknown parameters. Comparisons between observed and predicted values of shoot dry weights, leaf area indices, and rough rice yield were fairly well, so that SIMRIW appeared to predict relatively well the variations in productivity due to variations of climatic factors in the habitat. Climatic elements prior to as well as posterior to dam construction were generated at six locatons around lake Juam for thirty years by the method of Pickering et al. Climatic elements simulated in the study were daily maximum and minimum temperature, and amount of daily solar radiation. The change in rice productivity around lake Juam due to dam construction were estimated by inputting the generated climatic elements into SIMRIW. Average daily maximum temperature after dam construction appeared to be more or less lower than that before dam construction, while average daily minimum temperature became higher after dam construction. Average amount of daily solar radiation became lower with 0.9 MJ $d^{-1}$ after dam construction. As a result of simulation, the average productivity of habitats around lake Juam decreased about 5.6% by the construction of dam.

  • PDF

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.