Journal of the Korean Data and Information Science Society
/
v.27
no.6
/
pp.1601-1607
/
2016
Recently, weather information has been increasingly used in various area. This study presents the necessity of hourly weather information for electricity demand forecasting through correlation analysis and multivariate regression model. Hourly weather data were collected by Meteorological Administration. Using electricity demand data, we considered TBATS exponential smoothing model with a sliding window method in order to forecast electricity demand. In this paper, we have shown that the incorporation of weather infromation into electrocity demand models can significantly enhance a forecasting capability.
Journal of the Korea Society of Computer and Information
/
v.20
no.3
/
pp.19-27
/
2015
Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.
A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.
A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.
Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun;Yun, Jin I.
Korean Journal of Agricultural and Forest Meteorology
/
v.14
no.4
/
pp.277-282
/
2012
When wind speed exceeds a certain threshold, daily minimum temperature does not drop as predicted by the geospatial model in a cold pooling catchment. A linear regression equation was derived to explain the warming effect of wind speed on daily minimum temperature by analyzing observations at a low lying location within an enclosed catchment. The equation, Y=2X+0.4 ($R^2$=0.76) where Y stands for the warming ($^{\circ}C$) and X for the mean horizontal wind speed (m/s) at 2m height, was combined to an existing model to predict daily minimum temperature across an enclosed catchment on cold pooling days. The adjusted model was applied to 3 locations submerged in a cold air pool to predict daily minimum temperature on 25 cold pooling days with the input of simulated wind speed at each location. Results showed that bias (mean error) was reduced from -1.33 to -0.37 and estimation error (RMSE) from 1.72 to 1.20, respectively, in comparison with those from the unadjusted model.
Journal of Korean Society for Geospatial Information Science
/
v.20
no.3
/
pp.19-27
/
2012
Wind is an important variable for various scientific communities such as meteorology, climatology, and renewable energy. In this study, numerical simulations using WRF mesoscale model were performed to produce temporal and spatial wind information over the Republic of Korea during 2006. Although the spatial features and monthly variations of the near-surface wind speed were well simulated in the model, the simulated results overestimated the observed values as a whole. To correct these simulated wind speeds, a regression-based statistical algorithm with different constants and coefficients by land cover type was developed using the satellite-derived LST and NDWI. The corrected wind speeds for the algorithm validation showed strong correlation and close agreement with the observed values for each land cover type, with nearly zero mean bias and less than 0.4 m/s RMSE. Therefore, the proposed algorithm using remotely sensed surface observations may be useful for correcting simulated near-surface wind speeds and producing more accurate wind information over the Republic of Korea.
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.3
/
pp.130-139
/
2017
The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.
The Journal of Korean Institute of Communications and Information Sciences
/
v.42
no.5
/
pp.1085-1092
/
2017
In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.
마이크로파 센서 자료를 이용하여 태풍 강도를 산출하고자 TRMM TMI로부터 관측된 자료와 태풍 강도의 최대 상관성을 나타내는 지역올 찾고 최적의 상관 변수를 선정하였다. 분석기간은 2004년 6월부터 9월까지 발생된 태풍으로써 18개의 사례이다. TMI로부터 관측된 85 GHz 채널의 밝기온도,구름내 총 수증기량,얼음양,강우 강도,잠열방출양이 태풍 강도와의 상관성 분석을 위한 변수로 분석되었다. 태풍의 강도는 RSMC-Tokyo에서 발표된 Best track의 최대 풍속 자료를 이용하였다. 위성 관측 변수를 태풍 중심으로부터 공간 평균하였을 때 반경 2.0-2.5도 정도의 평균거리에서 최대의 상관성을 보였다. 위성 자료로부터 태풍 중심 풍속을 추정하기 위하여 회귀분석을 하였다. Best track과의 오차는 85 GHz 밝기온도와 수증기량을 이용한 다중 회귀 분석에서 오차가 최소를 보였다. 한편, 태풍강도 예측을 위한 통계모델에 마이크로파 위성 자료를 예측인자로 입력하여 태풍강도의 정확도가 3-6%정도 향상됨을 보였다.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.304-309
/
2008
기존의 태풍예측과 관련된 연구들은 전 지구적인 흐름이 직접적으로 계산되지 않은 중규모 기상모형이나 태풍모형들을 이용하여왔다. 하지만 최근 전 세계적으로 전구 규모의 모형들이 40km 이하의 고해상도 모형들이 개발되어 20km이하의 초고해상도 시물레이션이 가능해짐에 따라 지역적인 기상현상들을 전구모형을 통해서 재현해 내고 있다. 따라서 본 연구에서는 고해상도 전구모형을 이용하여 태풍 실험을 하고자 하며, 독일기상청에서 개발된 Icosahedral-hexagonal 격자체계의 GME전구 모형을 이용한 태풍모의 결과를 기상청 태풍 best track과 비교 분석 하였다. 실험에 사용된 모형 분해능은 연직 47layer (7 soil layer 포함), 수평 약 40km와 20km으로 구성되었다. 최근 3년($2005{\sim}2007$)간의 동아시아지역을 지나간 태풍을 대상으로 하였다. 태풍모의 시작시간은 각 TD(Tropical Depression)발생 24시간 전 자료를 이용하였으며, 각 태풍의 소멸 24시간 후까지 모의하였다. GME 모형을 이용한 태풍모의 결과에서 best track의 경우 모의 시작 후 약 168시간 forcast 결과가 매우 유사한 경로를 따라 진행해 가고 있으며, 태풍의 전향이 이루어지는 시각은 ${\pm}3$시간 내외의 오차를 보이고 있다. 태풍경로의 경우 40km 결과에 비해 20km 모의 결과가 best track에 더 가까운 결과를 보이고 있다. 중심기압변화의 경우 40km의 결과가 20km 결과에 비해 변화경향이 유사한 형태를 보이고 있으며, 20km 결과의 경우 중심기압의 변화가 다소 급하게 나타나는 경향을 보이는 특성을 가지고 있지만 40km결과에 비해 최저 중심기압이 더욱 뚜렷하게 나타나고 있으며 특히, MANYI case의 경우 관측값 930hPa보다 더 낮은 911.4hPa의 결과를 보이고 있다. 풍속의 경우도 중심기압변화와 유사한 결과를 보이고 있으나, 최대 풍속의 경우 40km 결과에 비해 20km결과가 관측과의 오차범위가 $2{\sim}3\;m/s$ 내외로 나타나고 있다. 그리고 GME모형의 경우 태풍(TD) 발생 약168시간 이전에 예측이 가능한 결과를 보인다. 이 연구의 결과는 다른 기상모형에서 태풍 강도가 약하게 모의되던 현상이 상당히 개선된 것을 알 수 있으며, 이는 20km 고해상도 GME 모형이 태풍예측모형으로 활용이 간능 할 것으로 사료 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.