• Title/Summary/Keyword: 풍속예측 오차

Search Result 44, Processing Time 0.028 seconds

Evaluation of weather information for electricity demand forecasting (전력수요예측을 위한 기상정보 활용성평가)

  • Shin, YiRe;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1601-1607
    • /
    • 2016
  • Recently, weather information has been increasingly used in various area. This study presents the necessity of hourly weather information for electricity demand forecasting through correlation analysis and multivariate regression model. Hourly weather data were collected by Meteorological Administration. Using electricity demand data, we considered TBATS exponential smoothing model with a sliding window method in order to forecast electricity demand. In this paper, we have shown that the incorporation of weather infromation into electrocity demand models can significantly enhance a forecasting capability.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

Wind Speed Prediction using WAsP for Complex Terrain (복합지형에 대한 WAsP의 풍속 예측성 평가)

  • Yoon, Kwang-Yong;Yoo, Neung-Soo;Paek, In-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Wind Speed Prediction using WAsP for Complex Terrain (WAsP을 이용한 복잡지형의 풍속 예측 및 보정)

  • Yoon, Kwang-Yong;Paek, In-Su;Yoo, Neung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Wind Effect on the Distribution of Daily Minimum Temperature Across a Cold Pooling Catchment (냉기호 형성 집수역의 일 최저기온 분포에 미치는 바람효과)

  • Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.277-282
    • /
    • 2012
  • When wind speed exceeds a certain threshold, daily minimum temperature does not drop as predicted by the geospatial model in a cold pooling catchment. A linear regression equation was derived to explain the warming effect of wind speed on daily minimum temperature by analyzing observations at a low lying location within an enclosed catchment. The equation, Y=2X+0.4 ($R^2$=0.76) where Y stands for the warming ($^{\circ}C$) and X for the mean horizontal wind speed (m/s) at 2m height, was combined to an existing model to predict daily minimum temperature across an enclosed catchment on cold pooling days. The adjusted model was applied to 3 locations submerged in a cold air pool to predict daily minimum temperature on 25 cold pooling days with the input of simulated wind speed at each location. Results showed that bias (mean error) was reduced from -1.33 to -0.37 and estimation error (RMSE) from 1.72 to 1.20, respectively, in comparison with those from the unadjusted model.

Temporal and Spatial Wind Information Production and Correction Algorithm Development by Land Cover Type over the Republic of Korea (한반도 시공간적 바람정보 생산과 토지피복별 보정 알고리즘 개발)

  • Kim, Do Yong;Han, Kyung Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2012
  • Wind is an important variable for various scientific communities such as meteorology, climatology, and renewable energy. In this study, numerical simulations using WRF mesoscale model were performed to produce temporal and spatial wind information over the Republic of Korea during 2006. Although the spatial features and monthly variations of the near-surface wind speed were well simulated in the model, the simulated results overestimated the observed values as a whole. To correct these simulated wind speeds, a regression-based statistical algorithm with different constants and coefficients by land cover type was developed using the satellite-derived LST and NDWI. The corrected wind speeds for the algorithm validation showed strong correlation and close agreement with the observed values for each land cover type, with nearly zero mean bias and less than 0.4 m/s RMSE. Therefore, the proposed algorithm using remotely sensed surface observations may be useful for correcting simulated near-surface wind speeds and producing more accurate wind information over the Republic of Korea.

Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed (일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.130-139
    • /
    • 2017
  • The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.

Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed (풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측)

  • Kim, Yeong-ju;Jeong, Min-a;Son, Nam-rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1085-1092
    • /
    • 2017
  • In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.

Relationship between TRMM TMI observation and typhoon intensity (TRMM TMI 관측과 태풍강도와의 관련성)

  • Byon, Jae-Young;Park, Jong-Sook;Kim, Baek-Jo
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.224-227
    • /
    • 2007
  • 마이크로파 센서 자료를 이용하여 태풍 강도를 산출하고자 TRMM TMI로부터 관측된 자료와 태풍 강도의 최대 상관성을 나타내는 지역올 찾고 최적의 상관 변수를 선정하였다. 분석기간은 2004년 6월부터 9월까지 발생된 태풍으로써 18개의 사례이다. TMI로부터 관측된 85 GHz 채널의 밝기온도,구름내 총 수증기량,얼음양,강우 강도,잠열방출양이 태풍 강도와의 상관성 분석을 위한 변수로 분석되었다. 태풍의 강도는 RSMC-Tokyo에서 발표된 Best track의 최대 풍속 자료를 이용하였다. 위성 관측 변수를 태풍 중심으로부터 공간 평균하였을 때 반경 2.0-2.5도 정도의 평균거리에서 최대의 상관성을 보였다. 위성 자료로부터 태풍 중심 풍속을 추정하기 위하여 회귀분석을 하였다. Best track과의 오차는 85 GHz 밝기온도와 수증기량을 이용한 다중 회귀 분석에서 오차가 최소를 보였다. 한편, 태풍강도 예측을 위한 통계모델에 마이크로파 위성 자료를 예측인자로 입력하여 태풍강도의 정확도가 3-6%정도 향상됨을 보였다.

  • PDF

고해상도 Icosahedral-Hexagonal 격자 전구모형 GME를 이용한 태풍예측에 관한 연구

  • Lee, Kyung-Min;Oh, Jae-Ho;Majewski, Detlev
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.304-309
    • /
    • 2008
  • 기존의 태풍예측과 관련된 연구들은 전 지구적인 흐름이 직접적으로 계산되지 않은 중규모 기상모형이나 태풍모형들을 이용하여왔다. 하지만 최근 전 세계적으로 전구 규모의 모형들이 40km 이하의 고해상도 모형들이 개발되어 20km이하의 초고해상도 시물레이션이 가능해짐에 따라 지역적인 기상현상들을 전구모형을 통해서 재현해 내고 있다. 따라서 본 연구에서는 고해상도 전구모형을 이용하여 태풍 실험을 하고자 하며, 독일기상청에서 개발된 Icosahedral-hexagonal 격자체계의 GME전구 모형을 이용한 태풍모의 결과를 기상청 태풍 best track과 비교 분석 하였다. 실험에 사용된 모형 분해능은 연직 47layer (7 soil layer 포함), 수평 약 40km와 20km으로 구성되었다. 최근 3년($2005{\sim}2007$)간의 동아시아지역을 지나간 태풍을 대상으로 하였다. 태풍모의 시작시간은 각 TD(Tropical Depression)발생 24시간 전 자료를 이용하였으며, 각 태풍의 소멸 24시간 후까지 모의하였다. GME 모형을 이용한 태풍모의 결과에서 best track의 경우 모의 시작 후 약 168시간 forcast 결과가 매우 유사한 경로를 따라 진행해 가고 있으며, 태풍의 전향이 이루어지는 시각은 ${\pm}3$시간 내외의 오차를 보이고 있다. 태풍경로의 경우 40km 결과에 비해 20km 모의 결과가 best track에 더 가까운 결과를 보이고 있다. 중심기압변화의 경우 40km의 결과가 20km 결과에 비해 변화경향이 유사한 형태를 보이고 있으며, 20km 결과의 경우 중심기압의 변화가 다소 급하게 나타나는 경향을 보이는 특성을 가지고 있지만 40km결과에 비해 최저 중심기압이 더욱 뚜렷하게 나타나고 있으며 특히, MANYI case의 경우 관측값 930hPa보다 더 낮은 911.4hPa의 결과를 보이고 있다. 풍속의 경우도 중심기압변화와 유사한 결과를 보이고 있으나, 최대 풍속의 경우 40km 결과에 비해 20km결과가 관측과의 오차범위가 $2{\sim}3\;m/s$ 내외로 나타나고 있다. 그리고 GME모형의 경우 태풍(TD) 발생 약168시간 이전에 예측이 가능한 결과를 보인다. 이 연구의 결과는 다른 기상모형에서 태풍 강도가 약하게 모의되던 현상이 상당히 개선된 것을 알 수 있으며, 이는 20km 고해상도 GME 모형이 태풍예측모형으로 활용이 간능 할 것으로 사료 된다.

  • PDF