• Title/Summary/Keyword: 풍력 자원

Search Result 286, Processing Time 0.026 seconds

Evaluation of Implementation Potential of Offshore Wind Farm Capacity in Korea Using National Wind Map and Commercial Wind Farm Design Tool (국가바람지도와 상용 단지설계 프로그램을 활용한 국내 해상풍력단지 공급가능 잠재량 산정)

  • Song, Yuan;Kim, Chanjong;Paek, Insu;Kim, Hyungoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.21-29
    • /
    • 2016
  • Commercial wind farm design tools and the national wind map are used to determine the implementation potential of offshore wind power in Korea in this study. For this, the territorial waters of Korea were divided into nine analysis regions and a commercial CFD code was used to obtain wind resource maps at 100m A.S.L. which is the hub height of a 5MW wind turbine used in this study. With the wind resource obtained, factors including water depth, distance from substations, minimum and maximum capacity of a wind farm, distance between turbines and wind farms were considered to determine wind power potential. Also, the conservation areas, military zones, ports, fishing grounds, etc. were considered and excluded. As the result, a total capacity of 6,720 MW was found to be the implementation potential and this corresponds to $3.38MW/km^2$ in API. Also if the distance from the substation is not considered, the potential increased to be 10,040 MW. This offshore wind farm potential is considered enough to satisfy the target of wind farm capacities in the 7th national plan for electricity demand and supply.

A Development of Dedicated Data Logger for Wind Resource of Small Wind Power Generator (소형 풍력발전 적용 풍력자원조사를 위한 데이터로거 개발)

  • Youn, Young-Chan;Jeong, Moon-Seon;Kim, Sang-Man;Kim, Tae-Gon;Moon, Chae-Joo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.146-152
    • /
    • 2012
  • To install a wind power generator, the survey on the wind environment resources must be conducted in advance. The survey on the wind environment resources is to collect and analyze data regarding the wind speed and direction on a data logger. The data logger consists of a sensor, signal processing circuit and storage device. According to the analysis of the stored data, the amount of power generation by the types of generators can be predicted and the most optimal generator including safety grade can be selected, and in case of installing a generator in the future, it can be utilized as basic data regarding supporting base and foundation construction method of survey points. Data logger was developed for a small wind power generator that is suitable for the international standard(IEC 61400) by using DSP-F28335 micro controller in this paper. It was developed to measure the wind speed of 1 [m/s]~17 [m/s], the wind direction of 0 [$^{\circ}$]~359 [$^{\circ}$], and temperature of -30 [$^{\circ}C$]~50 [$^{\circ}C$], and the comparative experiment with other companies' data loggers was conducted, and an error was measured to be less than ${\pm}0.1$ [m/s] for wind speed and less than +1 [$^{\circ}$] for wind direction.

Influence of Operation Conditions on the Performance of PEM Water Electrolysis (운전조건이 PEM 수전해 셀의 성능에 미치는 영향)

  • Sangyup Jang;Jaedong Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Green Hydrogen demonstration complex is under conduction in Jeju island which is rich in renewable energy resources and will produces green hydrogen using a water electrolysis systems. In order to check durability of long-term operation, AST(accelerated stress test) was applied and the power pattern based on Jeju Island's wind power was applied. After 800 hours of repeated application of low current and high current, the performance of the PEM water electrolysis cell was reduced by up to 10% and by about 5.5% in operating conditions. As the result of impedance analysis, it can be seen that the electrode polarization resistance greatly increased than ohmic polarization resistance. In addition, when the durability evaluation was conducted by applying the wind power pattern of Jeju Island, the performance of the PEM water electrolysis cell showed up to 1.6% and a decrease of less than 1% in operating conditions. As a result of the impedance, it can be seen that the change of ohmic resistance and electrode polarization resistance is small.

Assessment of Geothermal Energy Resources of Korea (한국의 지열에너지 부존량 산출)

  • Park, Sung-Ho;Lee, Young-Min;Kim, Jong-Chan;Kim, Hyoung-Chan;Koo, Min-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.617-620
    • /
    • 2008
  • 지열에너지는 지구 내부의 깊은 곳에서부터 발생하는 열과 상부 지각에서 방사성 동위원소의 붕괴에 의한 열에 의해 발생한다. 지열에너지는 다른 신재생에너지(수력, 풍력, 태양력, 조력, 바이오 매스등)에 비하여 가동효율이 높고, 지속가능한 재활용 자원으로 경제적 효율성이 높아 전 세계적으로 활용도와 잠재성이 높은 신재생에너지의 하나로 각광 받고 있다. 따라서, 지열에너지의 사용은 화석 연료 사용의 상당부분을 대체할 수 있고, 온실가스의 배출도 줄일 수 있다. 현재 우리나라의 지열에너지 이용은 저온성 지열에너지를 이용한 냉난방에 국한되어 있지만, 앞으로의 지열에너지 이용은 Enhanced Geothermal System(EGS) 을 이용한 지열에너지 개발에 초점이 맞추어질 것이다. 현재의 지열에너지 개발을 용이하게 하고, 또한 미래의 지열에너지 개발에 대비하여 우리나라의 이용가능한 지열에너지 부존량을 파악하기 위해 본 연구를 수행하였다. 연구 수행에는1560개 열물성 자료(밀도, 비열, 열전도도), 353개 지표 지열류량 자료, 180개 열생산율 자료와 54개의 지표온도 자료가 사용되었다. 우리나라의 지표에서부터 1 km 깊이 간격별로 5 km 깊이까지 지열에너지 부존량을 산출한 결과 지표에서 부터 5 km 깊이까지의 추출 가능한 지열에너지의 총 부존량은 $1.01{\times}10^{23}$ J로 산출되었다. 지열에너지 부존량을 Toe(석유환산톤) 로 환산하면 $2.40{\times}10^{12}$ Toe 가 된다. 추출한 지열에너지 자원의 2%를 사용한다고 가정 했을때 약 480억 Toe 이다. 이는 2006년 우리나라 전체 1차 에너지 총 소비량(2.33억 Toe)을 고려 했을때 약 200년 동안 사용할 수 있는 양이다.

  • PDF

Analysis of the Impact of QuikSCAT and ASCAT Sea Wind Data Assimilation on the Prediction of Regional Wind Field near Coastal Area (QuikSCAT과 ASCAT 해상풍 자료동화가 연안 지역 국지 바람장 예측에 미치는 영향 분석)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.309-319
    • /
    • 2012
  • In order to clarify the characteristics of satellite based sea wind data assimilations applied for the estimation of wind resources around the Korean peninsula, several numerical experiments were carried out using WRF. Satellite sea wind data used in this study are QuikSCAT from NASA and ASCAT from ESA. When the wind resources are estimated with data assimilation, its estimation accuracy is improved clearly. Since the band width is broad for QuikSCAT, statistical accuracy of the estimated wind resources with QuikSCAT assimilations is better than that with ASCAT assimilations. But the wind estimated around sub-satellite point matches better with of ASCAT compared to QuikSCAT assimilation. The impact of sea wind data assimilation on the prediction of wind resources lasts for 6 hours after data assimilation starts, therefore the data assimilation processes using both fine spatial and temporal resolutions of sea wind are needed to make a more useful wind resource map of the Korean Peninsula.

The Optimal Design and Economic Evaluation of a Stand-Alone RES Energy System for Residential, Agricultural and Commercial Sectors (신재생에너지 기반 독립 에너지공급 시스템 최적 설계 및 에너지수요 부문별 경제성 평가)

  • Kim, Kihyeon;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.470-478
    • /
    • 2016
  • Greenhouse gas (GHG) emissions caused by fossil fuels consumption is one of the challenging issues worldwide. Renewable energy source (RES)-based energy supply system can be a promising alternative to the current fossil fuel-based system. In this study, we propose an optimization approach for designing a stand-alone hybrid energy supply system using RES and evaluating economic performances of the energy systems. The suggested approach is used to answer the questions; i) what technology is suitable to various demand sectors in different regions, and ii) how does it cost to meet the demand in term of the levelized costs of energy (LCOE). We illustrate the applicability of the proposed approach by applying to the design problem of energy supply systems for residential, agricultural and commercial sectors of Korea. As the results of LCOE analysis, for the residential sector has the LCOE ranging of $0.37~$0.44/kWh, the agricultural sector of $0.15~$0.61/kWh and the commercial sector of $0.12~$0.28/kWh.

Fuel Mix of Electricity Generating System Considering Energy Security and Climate Change Mitigations : Focusing on Complementarity between Policy Objectives (에너지 안보 및 기후변화 대책을 고려한 발전구성비의 도출 : 정책 목표간의 상호보완성을 중심으로)

  • Ryu, Hanee;Kim, Kyunam;Kim, Yeonbae
    • Environmental and Resource Economics Review
    • /
    • v.20 no.4
    • /
    • pp.761-796
    • /
    • 2011
  • The purpose of this paper is to derive fuel mix of electricity generating system with the lowest cost considering energy security and climate change mitigations as the target of energy policy. Energy Security Price Index(ESPI), based on the measure of market concentration in fossil fuel market and political risk of exporting countries, is chosen to assess the level of energy security. The methodology of Energy Conservation Supply Curve(CSC) is applied to fuel mix to meet the carbon emission mitigation through increasing the alternatives participation and introduction of new technologies. These also represent an improvement on the level of energy security, having the complementarity between two objectives. The alternative measure for improving energy security is exploration and production(E&P) of fossil fuel for energy sufficiency. Fuel mix of electricity generating system to achieve certain objectives in 2020 can be derived with the lowest cost considering energy security and carbon emission mitigations.

  • PDF

Optimizing the Electricity Price Revenue of Wind Power Generation Captures in the South Korean Electricity Market (남한 전력시장에서 풍력발전점유의 전력가격수익 최적화)

  • Eamon, Byrne;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • How effectively a wind farm captures high market prices can greatly influence a wind farm's viability. This research identifies and creates an understanding of the effects that result in various capture prices (average revenue earned per unit of generation) that can be seen among different wind farms, in the current and future competitive SMP (System Marginal Price) market in South Korea. Through the use of a neural network to simulate changes in SMP caused by increased renewables, based on the Korea Institute of Energy Research's extensive wind resource database for South Korea, the variances in current and future capture prices are modelled and analyzed for both onshore and offshore wind power generation. Simulation results shows a spread in capture price of 5.5% for the year 2035 that depends on both a locations wind characteristics and the generations' correlation with other wind power generation. Wind characteristics include the generations' correlation with SMP price, diurnal profile shape, and capacity factor. The wind revenue cannibalization effect reduces the capture price obtained by wind power generation that is located close to a substantial amount of other wind power generation. In onshore locations wind characteristics can differ significantly/ Hence it is recommended that possible wind development sites have suitable diurnal profiles that effectively capture high SMP prices. Also, as increasing wind power capacity becomes installed in South Korea, it is recommended that wind power generation be located in regions far from the expected wind power generation 'hotspots' in the future. Hence, a suitable site along the east mountain ridges of South Korea is predicted to be extremely effective in attaining high SMP capture prices. Attention to these factors will increase the revenues obtained by wind power generation in a competitive electricity market.

A Study on the Economic Effects of New Renewable Energy Program by Using Input-Output Table (신재생에너지 보급사업의 에너지원별 산업파급효과에 관한 연구)

  • Jin, Sang Hyeon;Kim, Sung Wook
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.309-333
    • /
    • 2011
  • Korea is one of the countries that propel new renewable energy industrialization actively in the context of change in this industrial structure. The previous government declared this kind of industrialization as a national goal in 2004 and the current government also supports this strategy. However, it is necessary to check whether this strategy is proper and effective. The reason is because solar, wind and fuel cells that have attracted public attention as the new growth engines cannot replace main industries yet. This paper tries to analyze the economic effects of new renewable energy industrialization by dividing them into production effect and job creation effect. The result of this analysis shows that solar energy is not effective at all, while wind energy is very effective in both production and job creation. In conclusion, this paper suggests that the government has to propel new renewable energy industrialization after consideration of these kinds of economic effects.

  • PDF

Study on the Correlation between Air Emission Gas and Alternative Fuels Used in Cement Sintering Process (시멘트 소성공정에 사용된 대체연료와 대기배출가스간 상관관계 연구)

  • Choi, Jaewon;Baek, Ju-Ik;Kwon, Sang-Jin;Won, Pil-Sung;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.286-293
    • /
    • 2020
  • In this study, we tried to verify the correlation of the amount of combustible industrial by-products, household waste used as fuels on cement sintering process and the amount of NOx, and CO, harmful components in the exhaust gas. The analysis uses coal as natural fuel, soft plastics (plastics with properties that tend to be scattered by wind, such as vinyls), hard plastics (plastics with properties that are not scattered by wind, such as PETs, wate rubbers), and reclaimed oils as alternative fuels. Utilizing the response surface analysis (RSM) technique using the process data of 2019, such as the fuel input and combustion temperature of a domestic A cement manufacturer's sintering facilities as independent variables, and the NOx, and CO emissions to the stack as dependent variables. Correlation was analyzed. As a result, it was confirmed that the impact on the emission material differs for each waste. In particular, it was analyzed that the hard plastics increase the CO emission but have an excellent effect of reducing NOx.