• Title/Summary/Keyword: 풍력 발전기 소음

Search Result 109, Processing Time 0.024 seconds

A study on wind load characteristics of wind turbines (풍력발전기의 풍하중특성에 관한 연구)

  • Kim, Jung-Su;Park, Noh-Gill;Kim, Young-Duk;Kim, Su-Hyub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.124-129
    • /
    • 2010
  • Wind load characteristics is investigated for vibration analysis of wind turbine gearbox. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. A blast wind model is assumed, of which the maximum velocity is located at the center and the velocity profile is normally distributed. The periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train.

  • PDF

Structural Vibration Characteristics of a MW-Class Wind Turbine Tower Considering Earthquake Base Excitation (지진기반 가진효과를 고려한MW 급 풍력발전기 타워의 구조진동 특성연구)

  • Kim, Dong-Man;Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.616-620
    • /
    • 2009
  • Modern wind turbines have been mainly erected in region where earthquake are rare or normally weak, especially Korea was thought as safety zone from earthquake. But recently, the earthquake occurs more and more frequently. So, the wind turbine design is required the structural and functional stability under the earthquake. The earthquake can influence normal operation, even if a weak earthquake. There are two ways to review the design under earthquake using Computer Applied Engineering (CAE). One is the Response Spectrum Analysis (RSA) the other is Time History Analysis (THA). In this research, dynamic response on time is obtained under the earthquake by taking into account ground accelerogram consistent with the relevant standards applied to the turbine foundation.

  • PDF

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Eigenvalue Analysis of a Coupled Tower-blade System Considering the Shear Forces of a Nacelle (너셀부 전단력을 고려한 타워-블레이드 연성계의 고유치 해석)

  • Kim, Min-Ju;Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.514-520
    • /
    • 2011
  • Eigenvalue analysis of a wind turbine system was investigated analytically. It is derived that the equations of motion of a tower and a blade are coupled by shear forces inter-connected by boundary conditions. The eigenvalues of the coupled system was calculated using Galerkin method and it is found that the system becomes unstable when the tower and blade modes are coalesced. Further, parameter studies for the eigenvalues were performed with respect to the rotating speed of a blade, nacelle mass, blade and tower densities.

Wind Turbine Performance for Eigen Value Change of Pitch Controller (피치제어기의 고유치 변화에 따른 풍력발전기의 성능)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.337-343
    • /
    • 2012
  • NREL(National Renewable Energy Laboratory) Baseline controller conduct using method proposed RISO National Laboratory in Region 3. which designed the blade-pitch control system using a single degree-of-freedom model of the wind turbine. Idealized PID-Controlled rotor-speed error will respond as a second-order system with the natural frequency and damping ratio. RISO proposed specific natural frequency(=0.6 rad/s) and damping ratio(=0.7). If specific Eigen value apply to NREL 5 MW wind turbine, differ with pitch respond for simulation results of RISO report. Variation of specific eigen value investigate performance of NREL 5 MW wind turbine.

  • PDF

Dynamic characteristics analysis of wind-power generator rotor- bearing system (풍력발전 시스템용 유도발전기의 동특성 해석)

  • 정순철;김덕수;이재응;고장욱;차종환;오시덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1032-1039
    • /
    • 2001
  • In this paper, modal analysis of wind-power generator rotor system was performed by using finite element method. Experimental modal analysis of generator rotor system was performed and the result were compared with analytical ones. Sensitivity method and localized modification method were used to update finite element model. As a result of updating finite element model, errors of natural freguency were reduced within 0.5% and MAC value was improved near by l. Stability characteristics of wind-power generator rotor-bearing system through harmonic analysis about several external force will be analyzed using finite element model.

  • PDF

Noise Source of Large Wind Turbine (대형 풍력발전기 소음원 분석)

  • Shin, Hyung-Ki;Bang, Hyung-Jun
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.927-932
    • /
    • 2009
  • Wind turbine noise become main environmental problem as wind energy have been installed all around. Noise from large wind turbine give annoyance to listener, moreover it increase loading to whole system by restricting blade tip speed. However accurate noise mechanism of wind turbine is not yet examined. This paper reviewed noise source and analysis theory. Broadband noise if main component of wind turbine noise and airfoil self noise is main noise source. These make acoustic analogy hard to apply for analysis. For this reason, experimental equation is method for wind turbine noise prediction up to now. Spectrum analysis shows that vortex shedding noise exists around $1k{\sim}2k$ Hz. This region is most sensitive frequency range to human. Thus it is necessary to reduce this noise source.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

A Signal Processing Technique for Predictive Fault Detection based on Vibration Data (진동 데이터 기반 설비고장예지를 위한 신호처리기법)

  • Song, Ye Won;Lee, Hong Seong;Park, Hoonseok;Kim, Young Jin;Jung, Jae-Yoon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Many problems in rotating machinery such as aircraft engines, wind turbines and motors are caused by bearing defects. The abnormalities of the bearing can be detected by analyzing signal data such as vibration or noise, proper pre-processing through a few signal processing techniques is required to analyze their frequencies. In this paper, we introduce the condition monitoring method for diagnosing the failure of the rotating machines by analyzing the vibration signal of the bearing. From the collected signal data, the normal states are trained, and then normal or abnormal state data are classified based on the trained normal state. For preprocessing, a Hamming window is applied to eliminate leakage generated in this process, and the cepstrum analysis is performed to obtain the original signal of the signal data, called the formant. From the vibration data of the IMS bearing dataset, we have extracted 6 statistic indicators using the cepstral coefficients and showed that the application of the Mahalanobis distance classifier can monitor the bearing status and detect the failure in advance.