• Title/Summary/Keyword: 풍랑

Search Result 36, Processing Time 0.02 seconds

우리나라 풍랑특보와 해양기상부이 관측자료 비교 (2010-2020년)

  • 강민균;설동일
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.221-223
    • /
    • 2021
  • 풍랑특보는 우리나라 부근을 항행하는 선박 및 해상 업무 종사자에게 큰 영향을 미친다. 이 연구에서는 최근 11년(2010-2020년) 동안 기상청에서 발표한 서해·남해·동해의 앞바다 및 먼바다, 제주도 앞바다의 풍랑특보와 주요 해양기상부이의 관측자료를 비교·분석하여 풍랑특보의 적절성을 평가하였다. 각 해역에 대한 풍랑특보와 해양기상부이 관측자료를 일별, 월별, 연별로 통계를 내어 연평균, 월평균, 계절별로 비교한 결과, 풍랑특보의 적중률이 전 해역에 걸쳐 매우 낮은 것으로 분석되었다. 해상에서의 풍랑특보가 어선의 어업활동, 여객선 운항 및 관광, 해상 레저활동 등에 미치는 영향을 고려할 때 해양기상 예·특보의 정확성을 개선할 필요가 있음을 확인하였다.

  • PDF

Evaluation of the Appropriateness of High Wind Wave Alert by Comparing the Marine Meteorological Observation Buoy Data (해양기상부이 관측자료를 이용한 풍랑특보의 적절성 평가)

  • Kang, Min-Kyoon;Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • The high wind wave alert has a great impact on ships and maritime service workers navigating in the vicinity of Korea. This study aims to evaluate the appropriateness of the high wind wave alert by comparing and analyzing the observation data of major marine meteorological buoys with the high wind wave alerts in the coastal sea and offshore of the West Sea, South Sea, and the East Sea announced by the Korea Meteorological Administration for the past 11 years(2010-2020). As a result of comparing the daily, monthly, and annual statistics of the high wind wave alert and marine meteorological buoy observation data for each sea area by annual, monthly, and seasonal average, the accuracy of high wind wave alerts was very low across the entire sea area. In particular, it was analyzed that the accuracy in the coastal sea of the South Sea and Jejudo was the lowest in winter. It was confirmed that the accuracy of marine weather forecasts and alerts needs to be improved when considering the effects of the high wind wave alerts on fishing vessels, passenger ships operations and tourism, and marine leisure activities.

Characteristic Analysis on the Effectivation of High Seas Watch and Warning in Waters of the Korean (우리나라 해역별 풍랑특보 발효 특성 분석)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.11-12
    • /
    • 2015
  • 최근 6년간(2008~2013년)의 기상청 자료를 사용하여 우리나라 주변 해역의 풍랑특보 발효일수 분포를 조사, 분석하였다. 우리나라 해양기상 특보 구역 중에서, 동해남부 해역은 앞바다, 먼바다 공히 가장 많은 풍랑특보 발효일수 분포를 보였다. 그 다음은 남해동부, 동해중부 순이었다. 그리고 계절별로는 앞바다, 먼바다에서 공통적으로 겨울과 봄에 풍랑특보 발효일수가 많았고, 상대적으로 여름과 가을에 적은 분포를 보였다. 월별로는 11월부터 4월까지가 요주의 시기에 해당한다. 결론적으로, 우리나라 주변 해역을 항해하는 선박은 특히 한후기에 동해남부, 남해동부 및 동해중부 해역을 항해할 때 안전 항해 관점에서 각별한 주의를 요한다. 이는 한후기에 크게 발달하면서 우리나라의 남부지방 및 남해상을 주로 통과하는 이동성 온대저기압이 해양기상 상태에 큰 영향을 미치기 때문이다.

  • PDF

Distribution Characteristics of High Seas Watch and Warning in Korea (우리나라 풍랑특보의 분포 특성)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.103-108
    • /
    • 2017
  • This paper analyzed the distribution characteristics of incidents of high seas watches and warnings using data from 2010 to 2014. High seas watches and warnings are critical to the vessels and marine operators of the region, etc. because they affect the ability to safely maneuver. High seas often appear at the southern and middle regions of the East Sea and the eastern region of the South Sea. This phenomenon is closely connected to an extratropical cyclone's development and migration, as well as monsoon intensity. They occur primarily in winter(December ~ January) and spring(March ~ April). The statistical analysis of monthly high seas watches and warnings in both inshore and offshore areas shows a strong positive correlation.

해상태양광 부유체 안정성 평가를 위한 해양기상 적용에 관한 연구

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.331-332
    • /
    • 2018
  • 해상태양광 부유체의 안정성 평가를 위하여 우리나라 해역의 풍랑특보 분포 특성 및 태풍의 변화 경향, 기상재해의 특성 등을 분석, 요약하였다. 풍랑특보 일수는 한반도 동쪽에 해당하는 동해 남부 및 남해 동부, 동해 중부 해역에서 많았고 한반도 서쪽에 해당하는 서해 중부 및 서해 남부, 남해 서부 해역에서 적은 분포를 보였다. 이는 이동하면서 발달하는 온대저기압과 계절풍의 영향과 관련되어 있다. 계절로 구분해 보면, 겨울과 봄에 풍랑특보 일수 분포가 많고 상대적으로 가을과 여름에 적다. 근래 지구온난화와 관련하여 태풍의 발생 수는 미미하지만 감소하는 추세를 보이고 세기는 강해지는 경향을 보인다. 우리나라에 영향을 미치는 태풍은 1년 평균 3.2개이고, 남해를 통과하는 경우가 가장 많다. 서해를 통과하는 태풍의 수는 감소하는 경향을 보이고 동해를 통과하는 태풍의 수는 증가하는 추세를 보인다. 대규모적인 기상재해를 유발시키는 태풍은 주로 남해안을 통과하는 태풍이고 시기는 8월 하순에서 9월 중순에 해당한다. 이에 대한 각별한 주의가 요구된다.

  • PDF

Development of the Wind Wave Damage Estimation Functions based on Annual Disaster Reports : Focused on the Western Coastal Zone (재해연보기반 풍랑피해예측함수 개발 : 서해연안지역)

  • Choo, Tai-Ho;Cho, Hyoun-Min;Shim, Sang-Bo;Park, Sang-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.154-163
    • /
    • 2018
  • Not only South Korea but also Global world show that the frequency and damages of large-scale natural disaster due to the rise of heavy rain event and typhoon or hurricane intensity are increasing. Natural disasters such as typhoon, flood, heavy rain, strong wind, wind wave, tidal wave, tide, heavy snow, drought, earthquake, yellow dust and so on, are difficult to estimate the scale of damage and spot. Also, there are many difficulties to take action because natural disasters don't appear precursor phenomena However, if scale of damage can be estimated, damages would be mitigated through the initial damage action. In the present study, therefore, wind wave damage estimation functions for the western coastal zone are developed based on annual disaster reports which were published by the Ministry of Public Safety and Security. The wind wave damage estimation functions were distinguished by regional groups and facilities and NRMSE (Normalized Root Mean Square Error) was analyzed from 1.94% to 26.07%. The damage could be mitigated if scale of damage can be estimated through developed functions and the proper response is taken.

Development of Predicting Function for Wind Wave Damage based on Disaster Statistics: Focused on East Sea and Jeju Island (재해통계기반 풍랑피해액예측함수 개발 : 동해안, 제주를 중심으로)

  • Choo, Tai-Ho;Kwon, Jae-Wook;Yun, Gwan-Seon;Yang, Da-Un;Kwak, Kil-Sin
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.18 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • In current stage, it is hard to predict the scale of damage caused by natural disaster and it is hard to deal with it. However, in case of disaster planning level, if it is possible to predict the scale of disaster then quick reaction can be done which will reduce the damage. In the present study, therefore, function of wind wave damage estimation among various disaster is developed. Damage of wind wave and typhoon in eastern and Jeju coastal zone was collected from disaster report (1991~2014) published by Ministry of Public Safety and Security and to reflect inflation rate, 2014 damage cost was converted. Also, wave height, wind speed, wave direction, wave period, etc was collected from Meteorological Administration and Korea Hydrographic and Oceanographic Administration web site. To reflect the characteristic of coastal zone when wave damage occurs, CODI(Coastal Disaster Index), COSI(Coastal Sensitivity Index), CPII(Coastal Potential Impact Index) published by Korea Hydrographic and Oceanographic Agency in 2015 were used. When damage occurs, function predicting wind wave damage was developed through weather condition, regional characteristic index and correlation of damage cost.

Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics (재해통계기반 남해연안지역 풍랑피해액예측함수 제안)

  • Choo, Tai-Ho;Yun, Gwan-Seon;Kwon, Yong-Been;Park, Sang-Jin;Kim, Seong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • The natural disasters such as typhoon, earthquake, flood, heavy rain, drought, sweltering heat, wind wave, tsunami and so on, are difficult to estimate the scale of damage and spot. Also, these disasters were being damaged to human life. However, if based on the disaster statistics the past damage cases are analyzed and the estimated damages can be calculated, the initial damage action can be taken immediately and based on the estimated damage scale the damage can be mitigated. In the present study, therefore, we proposed the functions of wind wave damage estimation for the southern coast. The functions are developed based on Disaster Report('91~'14) for wind wave and typhoon disaster statistics, regional characteristics and observed sea weather.

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.