• Title/Summary/Keyword: 품사 결정

Search Result 49, Processing Time 0.03 seconds

A Model of English Part-Of-Speech Determination for English-Korean Machine Translation (영한 기계번역에서의 영어 품사결정 모델)

  • Kim, Sung-Dong;Park, Sung-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.53-65
    • /
    • 2009
  • The part-of-speech determination is necessary for resolving the part-of-speech ambiguity in English-Korean machine translation. The part-of-speech ambiguity causes high parsing complexity and makes the accurate translation difficult. In order to solve the problem, the resolution of the part-of-speech ambiguity must be performed after the lexical analysis and before the parsing. This paper proposes the CatAmRes model, which resolves the part-of-speech ambiguity, and compares the performance with that of other part-of-speech tagging methods. CatAmRes model determines the part-of-speech using the probability distribution from Bayesian network training and the statistical information, which are based on the Penn Treebank corpus. The proposed CatAmRes model consists of Calculator and POSDeterminer. Calculator calculates the degree of appropriateness of the partof-speech, and POSDeterminer determines the part-of-speech of the word based on the calculated values. In the experiment, we measure the performance using sentences from WSJ, Brown, IBM corpus.

  • PDF

Resolving Part-of-Speech Tagging Ambiguities by a Maximum Entropy Boosting Model (최대 엔트로피 부스팅 모델을 이용한 품사 모호성 해소)

  • 박성배;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.522-524
    • /
    • 2003
  • 품사 결정 문제는 자연언어처리의 가장 기본적인 문제들 중 하나이며, 기계학습의 관점에서 보면 분류 문제(classification problem)로 쉽게 표현된다. 본 논문에서는 품사 결정의 모호성을 해소하기 위해서 최대 엔트로피 부스팅 모델(maximum entropy boosting model)을 이 문제에 적응하였다. 그리고, 품사 결정에서 중요한 요소 중의 하나인 미지어 처리를 위해서 특별히 설계된 일차 자질을 고려하였다. 최대 엔트로피 부스팅 모델의 장점은 쉬운 모델링인데, 실제로 품사 결정을 위한 일차 자질만 작성하는 노려만 들이고도 96.78%의 정확도를 보여 지금까지 알려진 최고의 성능과 거의 비슷한 결과를 보였다.

  • PDF

Probabilistic Part-Of-Speech Determination for Efficient English-Korean Machine Translation (효율적 영한기계번역을 위한 확률적 품사결정)

  • Kim, Sung-Dong;Kim, Il-Min
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.459-466
    • /
    • 2010
  • Natural language processing has several ambiguity problems, and English-Korean machine translation especially includes those problems to be solved in each translation step. This paper focuses on resolving part-of-speech ambiguity of English words in order to improve the efficiency of English analysis, which is in part of efforts for developing practical English-Korean machine translation system. In order to improve the efficiency of the English analysis, the part-of-speech determination must be fast and accurate for being integrated with machine translation system. This paper proposes the probabilistic models for part-of-speech determination. We use Penn Treebank corpus in building the probabilistic models. In experiment, we present the performance of the part-of-speech determination models and the efficiency improvement of the machine translation system by the proposed part-of-speech determination method.

Comparison of Three POS Sets in Prosody Break Index Estimation (운율경계강도 예측을 위한 품사셋 비교 연구)

  • 엄기완
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.81-84
    • /
    • 1998
  • 본 논문에서는 문장의 문법 구조로부터 운율 경계 강도를 효율적으로 예측하기 위해서, 문법 정보의 세밀함에 따라 품사셋을 3단계로 설정하였다. 그리고 운율 경계 강도를 예측하는데 있어서 어떠한 품사셋이 최적인가를 알아보기 위해 150문장의 코퍼스를 구축하였으며, 세 종류의 품사셋에 대해 코퍼스를 수작업으로 품사분석을 하였다. 청취실험으로 결정한 운율 경계 강도를 바탕으로 확률론적인 모델링 방법을 사용하여 예측하는 실험을 하였다. 이러한 예측결과를 평가 비교하여 최적의 품사셋을 정하였다.

  • PDF

Syllable-based POS Tagging without Korean Morphological Analysis (형태소 분석기 사용을 배제한 음절 단위의 한국어 품사 태깅)

  • Shim, Kwang-Seob
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.3
    • /
    • pp.327-345
    • /
    • 2011
  • In this paper, a new approach to Korean POS (Part-of-Speech) tagging is proposed. In previous works, a Korean POS tagger was regarded as a post-processor of a morphological analyzer, and as such a tagger was used to determine the most likely morpheme/POS sequence from morphological analysis. In the proposed approach, however, the POS tagger is supposed to generate the most likely morpheme and POS pair sequence directly from the given sentences. 398,632 eojeol POS-tagged corpus and 33,467 eojeol test data are used for training and evaluation, respectively. The proposed approach shows 96.31% of POS tagging accuracy.

  • PDF

Two-Level Part-of-Speech Tagging for Korean Text Using Hidden Markov Model (은닉 마르코프 모델을 이용한 두단계 한국어 품사 태깅)

  • Lee, Sang-Zoo;Lim, Heui-Suk;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.305-312
    • /
    • 1994
  • 품사 태깅은 코퍼스에 정확한 품사 정보를 첨가하는 작업이다. 많은 단어는 하나 이상의 품사를 갖는 중의성이 있으며, 품사 태깅은 지역적 문맥을 이용하여 품사 중의성을 해결한다. 한국어에서 품사 중의성은 다양한 원인에 의해서 발생한다. 일반적으로 동형 이품사 형태소에 의해 발생되는 품사 중의성은 문맥 확률과 어휘 확률에 의해 해결될 수 있지만, 이형 동품사 형태소에 의해 발생되는 품사 중의성은 상호 정보나 의미 정보가 있어야만 해결될 수 있다. 그리나, 기존의 한국어 품사 태깅 방법은 문맥 확률과 어휘 확률만을 이용하여 모든 품사 중의성을 해결하려 하였다. 본 논문은 어절 태깅 단계에서는 중의성을 최소화하고, 형태소 태깅 단계에서는 최소화된 중의성 중에서 하나를 결정하는 두단계 태깅 방법을 제시한다. 제안된 어절 태깅 방법은 단순화된 어절 태그를 이용하므로 품사 집합에 독립적이면, 대량의 어절을 소량의 의사 부류에 사상하므로 통계 정보의 양이 적다. 또한, 은닉 마르코프 모델을 이용하므로 태깅되지 않은 원시 코퍼스로부터 학습이 가능하며, 적은 수의 파라메터와 Viterbi 알고리즘을 이용하므로 태깅 속도가 효율적이다.

  • PDF

Dynamic Oracle for Neural Transition-based Morpheme Segmentation and POS Tagging of Korean (동적 오라클을 이용한 뉴럴 전이기반 한국어 형태소 분석 및 품사 태깅)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.413-416
    • /
    • 2018
  • 한국어 형태소 분석은 많은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있기 때문에 형태소를 분류하고 형태소에 알맞은 품사를 결정하는 것은 매우 중요하다. 기존의 형태소 분석은 [B, I]등의 태그를 포함된 품사를 음절 단위로 결정하는 방식으로 주로 연구되었다. 본 논문에서는 의존 파싱 분야에서 널리 활용되는 전이 기반 방식을 이용하여 딥러닝 모델을 통해 형태소 분석을 수행한다. 이에 나아가 학습 단계에서 정답으로부터 추출된 정보를 사용하고 평가 단계에서는 예측으로부터 추출된 정보를 사용함으로써 발생하는 차이점을 극복하기 위한 방법론인 동적 오라클을 적용하였다. 실험 결과, 세종 품사 부착 말뭉치 셋에 적용하여 형태소 F1 97.93%, 어절 정확도 96.70%로 기존의 성능을 더욱 향상시켰다.

  • PDF

Korean Morphological Analyzer and POS Tagger Just Using Finite-State Transducers (유한상태변환기만을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Won-Byeong;Kim, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • 이 논문은 유한상태변환기만을 이용하여 한국어 형태소 분석 및 품사 태깅 시스템을 제안한다. 기존의 한국어 형태소 분석 시스템들은 규칙기반 형태소 분석기가 주를 이루고 한국어 품사 태깅 시스템은 은닉마르코프 모델 기반 품사 태깅이 주를 이루었다. 한국어 형태소 분석의 경우 유한상태변환기를 이용한 경우도 있었으나, 이 방법은 변환기를 작성하기 위한 규칙을 수작업으로 구축해야 하며, 그 규칙에 따라서 사전이 작성되어야 한다. 이 논문에서는 품사 태깅 말뭉치를 이용해서 유한상태변환기에서 필요한 모든 변환 규칙을 자동으로 추출한다. 이런 방법으로 네 종류의 변환기, 즉, 자소분리변환기, 단어분리변환기, 단어형성변환기, 품사결정변환기를 자동으로 구축한다. 구축된 변환기들은 결합연산(composition operation)을 이용하여 하나의 유한상태변환기를 구성하여 한국어 형태소 분석과 동시에 한국어 품사 태깅을 수행한다. 이 방법은 하나의 유한상태변환기만을 이용하기 때문에 복잡도는 선형시간(linear complexity)을 가지면, 형태소 분석기와 품사 태깅 시스템을 매우 짧은 시간 내에 개발 할 수 있었다.

  • PDF

Techniques for improving performance of POS tagger based on Maximum Entropy Model (최대 엔트로피 모텔 기반 품사 태거의 성능 향상 기법)

  • Cho, Min-Hee;Kim, Myoung-Sun;Park, Jae-Han;Park, Eui-Kyu;Ra, Dong-Yul
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.73-81
    • /
    • 2004
  • 한국어에서의 품사 결정 문제는 형태론적 중의성 문제도 있지만, 영어에는 발생하지 않는 동품사 중의성 문제로 더 까다롭다. 이러한 문제들은 어휘 문맥을 고려하지 않고서는 해결하기 어렵다. 통계 자료 부족 문제에 쉽게 대처하는 모델이 필요하며 문맥에 따른 품사를 결정하고자 할 때 서로 다른 형태의 여러 가지 어휘 문맥 정보를 반영할 수 있는 모델이 필요하다. 본 논문에서는 이런 점에 가장 적합한 최대 엔트로피(maximum entropy : ME) 모델을 품사태깅 작업에 이용하는 문제에 대해 다룬다. 어휘 문맥 정보를 이용하기 위한 자질함수가 매우 많아지는 문제에 대처하기 위해 필요에 따라 어휘 문맥 정보를 사전화 한다. 본 시스템의 특징으로는 어절 단위 품사 태깅을 위한 처리 기법. 어절의 형태소 분석열에 대한 어절 내부 확률 계산. ME 모델의 정규화 과정 생략에 의한 성능 향상, 디코딩 경로의 확장과 같은 점들이 있다. 실험을 통하여 본 연구의 기법이 높은 성능의 시스템을 달성할 수 있음을 알게 되었다.

  • PDF

Syllable-based Korean POS Tagging using POS Distribution and Bidirectional LSTM CRFs (품사 분포와 Bidirectional LSTM CRFs를 이용한 음절 단위 형태소 분석기)

  • Kim, Hyemin;Yoon, Jungmin;An, Jaehyun;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.3-8
    • /
    • 2016
  • 형태소 분석기는 많은 자연어 처리 영역에서 필수적인 언어 도구로 활용되기 때문에 형태소에 대한 품사를 결정하는 것은 매우 중요하다. 최근 음절 기반으로 형태소의 품사를 태깅하는 방법에 대한 연구들이 많이 진행되고 있다. 음절 단위 형태소 분석은 음절 단위로 분리된 형태소에 대해서 기계학습을 이용하여 분리된 음절 단위로 품사를 태깅하는 단계를 가진다. 본 논문에서는 기존의 CRF를 이용한 음절 단위 품사 태깅 방법을 개선하기 위해 bi-LSTM-CRFs를 이용한 방법을 제안한다. 또한, bi-LSTM-CRFs의 입력을 음절의 품사 분포 벡터를 이용해 확장함으로써 음절 단위 품사 태깅의 성능을 향상 시켰다.

  • PDF