• Title/Summary/Keyword: 표층 집적

Search Result 52, Processing Time 0.025 seconds

Assessment of surface current from coastal ocean model in the Youngil Bay (연안해양모델을 통한 영일만의 표층해류 평가)

  • Kim, Dong Hyeon;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.231-231
    • /
    • 2022
  • 하구에서의 흐름은 하천의 담수와 바다에서부터 유입되는 염수, 조석, 파랑 등으로 인해 복잡한 흐름구조와 혼합 양상을 보인다. 특히 만 내에 하천이 있을 경우 만의 해류특성은 하구에서의 혼합과 이송에 지배적인 영향을 미치며, 하천에서부터 방류되는 입자들은 만의 해류특성 따라 만에서의 체류시간과 이송이 결정된다. 잔차류 특성에 의한 순 물질 플럭스의 방향과 조석비대칭에 따른 하구에서의 퇴적 형태들이 결정되며, 이로 인해 하구에서의 퇴적물 퇴적 및 물질의 집적 위치, 하구 인근과 만에서의 환경변화에 영향을 줄 수 있다. 따라서 만 내에서의 혼합과 입자의 이송확산, 하천 담수의 영향역 등과 같은 만과 하천의 흐름 특성을 이해하는 것은 연안 및 하구의 환경 및 관리에 중요하다. 본 연구에서는 영일만과 형산강을 대상으로 계절변화에 따른 영일만 내 흐름과 형산강 하구에서의 퇴적양상에 대해 수치모의를 통해 수행하였다. 수치모델로는 천수방정식으로 준 3차원 유동해석을 하는 Delft-3D Flow와 파랑모형인 SWAN 모델을 결합하여 형산강하구와 영일만의 유동을 해석하였다. 상류개방경계는 형산강하구 9 km, 하류개방경계는 영일만 외해 50 km로 설정하였고, 경계조건은 대상지역의 관측소 자료와 전지구 모형자료를 결합하여 구성하였다. 또한, 라그랑쥬 입자추적모델을 통해 형산강 상류에서 유입한 입자들의 영일만 내 체류시간과 집적 위치를 평가하였다.

  • PDF

Effect of Perforated PVC Underdrainage Pipe on Desalting of Plastic Film House Soils (시설재배지 유공관 암거배수에 의한 염류집적 경감효과)

  • Kim, Dae-Su;Yang, Jae E.;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Objective of this research was to remove the accumulated salts in the plastic film house soils by installing the perforated PVC (${\phi}10cm$) underdrainage pipes at 50 cm depth of soils with cultivating vegetables. Efficiency of the underdrainage pipes was assessed based on the changes of soil chemical properties such as pH, EC, and cations, and growth and yield parameters of the vegetables between the two treatments; the control and the underdrainage pipe treatments. The EC of the underdrainage pipes installed soils after two growing seasons were in the ranges of $1.42-2.88dS\;m^{-1}$ but those of the control were in the ranges of $3.86-4.53dS\;m^{-1}$, indication the underdrainage pipes effectively removed the accumulated salts in soils. The pHs of the control soils and the underdrainage pipe installed soil were in the ranges of 7.2-7.5 and 6.9-7.3, respectively. There was a significant correlation between pH and cation exchange capacity (CEC) of the soils ($CEC=17.107{\times}pH-106.2$, $r^2=0.759$, P < 0.05). The ECs of the soils at different depths were compared between the two treatments after cultivating vegetables with lettuce-lettuce-garland chrysanthemum rotation systems. The ECs of the control soils at depths of 0-10, 10-20, 20-30, 30-40, and 40-50 cm were 3.45, 3.47, 3.03, 2.03, and $2.28dS\;m^{-1}$, respectively, with decreasing with soil depths. On the other hand, the respective ECs of the underdrainage pipes installed soils were 2.43, 2.52, 2.28, 4.00, and $4.23dS\;m^{-1}$ with increasing with soil depths. This might be derived from the salts moved downward with the draining water into the subsoil. The order of cations moved downward was Mg > Ca > K, based on the ratios of cations at specific depth over those at the surface soil. The survival rates of lettuce after 15 days of transplanting in the underdrainage pipe installed soils were 98.2% as compared to 86.6% of the control. The underdrainage pipe treatment also increased the diameter of the lettuce stalk from 12.9mm of the control to 13.7mm. Overall results demonstrated that the installment of the underdrainage pipes in the subsoils of the salt accumulated plastic film house soil effectively removed the salts by leaching downward,resulting in lowering soil EC and enhancing the growth and yield of vegetables.

Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils (시설재배지에서 윤답전환체계가 인산분포에 미치는 영향)

  • Lee, Yong-Bok;Lee, In-Bog;Hwang, Jun-Young;Lee, Kyung-Dong;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • Much of the plastic film house soils in the southern part of the Korean peninsula are managed using a upland-paddy rotation culture system (hereafter, RS) to prevent salt accumulation in soil. However, information on the effects of RS on soil properties and environmental conservation is limited. In order to determine the effects of RS on soil properties, 22 fields under RS and 20 fields under a non-rotation system (hereafter, NRS) in plastic film houses were selected in Chinju, in southern Korea, and the P distribution characteristics were investigated, including the chemical properties. The RS contributed to the removal of water-soluble salts in the surface layer and to the redistribution of organic matter evenly in the soil profile. In the AP horizon, available phosphorus levels were $1,611mg\;kg^{-1}$ in RS and $1,789mg\;kg^{-1}$ in NRS, which markedly exceeds the optimum range for plant cultivation. Total P was lower in RS (average $4,593mg\;kg^{-1}$) than in NRS (average $5,440mg\;kg^{-1}$) and this decrease was taken to be an effect of RS. Inorganic P was the predominant form of P in both systems, followed by organic P and residual P. A soil profile showed that total and inorganic P concentrations decreased with depth in both systems. However, organic P increased withdepth in RS, which was in contrast to that noted in NRS. The increase in organic P with depth in RS implied that organically rather than inorganically derived phosphate moved through the soil. The concentrations of water-soluble P, Ca-P and Al-P were higher in NRS than in RS soil profiles, but the Fe-P concentration was higher in RS than in NRS, which might be affected by the anaerobic conditions found in paddy soils. In both systems, the Al-P form of extractable P predominated in the surface layer, followed by Ca-P, Fe-P and water-soluble P. With increasing depth, the composition rate of Ca-P to extractable P decreased to less than 10% in the 60-70cm depth, as Fe-P dominated at this level. The content of water-soluble P, potentially the main source of eutrophication, was higher in NRS than in RS. These results indicated that the RS used in plastic film houses contributed to the removal of water-soluble salts but only slightly decreased the phosphate concentration.

Role of Sand Shoal in the Intertidal Flat Sedimentation, Gomso Bay, Southwestern Korea (서해 곰소만 조간대 퇴적작용에서 모래톱의 역할)

  • Lee, In-Tae;Chun, Seung Soo
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2001
  • A sand shoal (1300 m long and 400 m wide) with an orientation of north-south is formed on the lower tidal flat of Gomso Bay, southwestern coast of Korea. Surface bedforms, sedimentary structures, sedimentation rate, grain size distribution and can-corer sediments have been measured and analysed along the sand shoal proper zone B and its offshore zone A and onshore zone C during the period of 14 months. These three zones can be differentiated based on sedimentological characteristics: A zone - fine sand (3${\varphi}$ mean), linguoid-type ripples, 70 mm/month in sedimentation rate and no bioturbation, B zone - medium sand (2.5${\varphi}$ mean), dunes (4${\sim}$5 m in wavelength), 30 mm/month in sedimentation rate and no bioturbation, and C zone - coarse silt (5${\varphi}$ mean), sinuous-type ripples, 10 mm/month in sedimentation rate and well-developed bioturbation. These characteristics indicate that the zone C represents a relatively low-energy regime environment whereas the zone A corresponds to a relatively high-energy environment. The zone B would play an important role for a barrier to dissipate the approaching wave energy, resulting in maintaining of low-energy conditions in the inner part of Gomso-Bay intertidal flat behind.

  • PDF

Effect of Irrigation Water Salinization on Salt Accumulation of Plastic Film House Soil around Sumjin River Estuary (섬진강 하구 관개용수 염화에 의한 시설재배단지 토양의 염류집적 심화)

  • Lee, Seul-Bi;Hong, Chang-Oh;Oh, Ju-Hwan;Gutierrez, Jessie;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2008
  • The causes of salt accumulation in soils of plastic film houses nearby Sumjin river estuary in Mokdo-ri($127^{\circ}46'E\;35^{\circ}1'N$), Hadong, Gyeongnam, Korea were investigated in 2006. With chemical properties soils and water analyzed and fertilization status monitored, the study showed that mean salt concentration of soil was much higher at EC $4.3\;dS\;m^{-1}$ than the Korean average (EC $2.9\;dS\;m^{-1}$) in 2000s for plastic film house's soil with exchangeable Na $0.8\;cmol^+\;kg^{-1}$ and water-soluble Cl $232\;mg\;kg^{-1}$, and then might result to salt damage in sensitive crop plants. Salt concentration of ground water used as main irrigation water source contained very high EC with corresponding value of $2.6\;dS\;m^{-1}$. Particularly, increase of EC value was directly proportional with the increased pumping of ground water used as a water-covering system in order to protect the temperature inside plastic film houses from the early winter season. High Na and Cl portion of ions in water might had contributed to the specific ion damage in the crops. Secondly, heavy inputs of chemicals and composts significantly increased the accumulated salts in soil. Conclusively, salt accumulation might had been accelerated by use of salted-groundwater irrigation and heavy fertilization rate. To minimize this problem, ensuring good quality of irrigation water is essential as well as reducing fertilization level.

Distributions and Textural Characters of the Bottom Sediments on the Continental shelves, Korea (한반도 대륙붕 퇴적물의 분포와 조직특성)

  • 최진용;박용안
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.259-271
    • /
    • 1993
  • The distributions of bottom sediments and the depositional processes on the continental shelves of Korean Seas are interpreted. Generally the continental shelf sediments can be classified into the sand-facies and mud-facies, showing the typical bimodal size distributions Most of the sandy and gravelly sediments on the outer shelf floor are interpreted as "relict" sediments that were deposited during the last glacial times when the sea level was lower than the present. On the other hand the muddy sediments on the inner shelf area are interpreted as "recent" sediments that are deposited under the present environment conditions. It is understood that most of the fine materials cannot escape the inner shelf area due to the strong tidal and coastal fronts, and are transported eastward from the West Sea along the southern coast of Korean Peninsula. The dark-colored muddy sediments in the Hupo Basin of the East Sea are, however, considered to be "relict" sediments. In the midshelf area fine materials are mixed with the relict coarse sediments, and some of the relict sediments are continuously reworked under the present environmental conditions forming the "palimpsest" sediments.

  • PDF

A Study on the Transport of Microplastics Contained in the Wastewater of the King Sejong Station according to the Wave Effect (파랑 효과에 따른 세종과학기지 방류수에 포함된 미세플라스틱 이송에 관한 연구)

  • Kim, Bo-Kyung;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.245-245
    • /
    • 2021
  • 해양으로 유출된 5 mm 이하의 크기로 분해된 미세플라스틱이 해양 환경 오염의 주요 원인으로 자리잡았다. 최근에는 청정해역으로 알려진 남극해에서도 발견되고 있어 남극해에 잔류하는 미세플라스틱 오염 수준을 이해하기 위해 노력하고 있다. 하지만, 파랑의 효과를 고려한 남극해의 해수 순환 구조와 미세플라스틱의 고유 특성을 반영한 미세플라스틱의 거동 및 공간적 분포에 대한 복합적 이해는 상대적으로 부족하다. 남극해에서 발견된 미세플라스틱은 과학기지들의 방류수나, 조사선 등과 같은 인위적인 활동으로 인해 집적될 수 있으며, 특히 영구적으로 거주하는 과학기지에서 흘려보내는 방류수에 포함된 미세플라스틱은 과학기지 주변 해수 오염에 직접적인 영향을 줄 것으로 예상된다. 따라서, 본 연구에서는 파랑 효과에 따른 남극 킹조지 섬(King George Island)에 위치한 세종과학기지의 방류수에 포함된 미세플라스틱의 이송에 대해 모의하였다. 세종과학기지가 위치한 킹조지 섬과 넬슨 섬(Nelson Island) 사이의 멕스웰 만(Maxwell Bay)의 해수 흐름을 재현하기 위하여 해수 유동 모델(Delft3D-FLOW)이 사용되었다. 또한, 해수 유동 모델에 파랑 모델(Delft3D-WAVE)을 결합하여 파랑의 효과가 미세플라스틱의 이송에 미치는 영향을 확인하였다. 세종과학기지의 방류수가 흘러나가는 마리안 소만(Marian Cove)의 유속장을 바탕으로 이송, 확산, 입자의 침강 속도를 고려하여서, 세종과학기지에서 밀물 시 방출한 입자를 라그랑지안 입자 추적(Lagrangian Particle Tracking) 방법을 이용해 추적하였다. 해수의 밀도보다 가벼운 플라스틱의 경우 해수 표층의 흐름을 따라 소만 내부로 이송되어 해안선에 도달하고, 해수의 밀도보다 무거운 플라스틱의 경우 소만 내부로 이송되나 입자의 침강 속도로 인해 방출 위치 근처에서 집적된다. 파랑의 효과를 고려하게 되면, 고려하기 전보다 두 종류의 미세플라스틱 모두 소만 내부로 더 멀리 이송되는데, 이는 파랑으로 인한 힘(wave-induced force)이 해수 유동 모델의 운동방정식에 추가되며 파랑 에너지 분산으로 인해 해수 흐름에 변화를 준 것으로 보인다.

  • PDF

Soil Genesis on the King Muryung's Tomb of the Ancient Baegje Dynasty in Korea (백제(百濟) 무령왕능(武寧王陵) 봉분(封墳)의 토양생성화(土壤生成化) 작용(作用)에 관(關)한 연구(硏究))

  • Shin, Young-Hwa;Choi, Dae-Ung;Jung, Pil-Kyun;Lee, Dong-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.191-194
    • /
    • 1992
  • The tomb of the king Muryung, the 25th king of ancient Baegje dynasity in Korea, was proved to be constructed about 1500 years ago. The Physico-chemical characteristics were determined in order to investigate the pedogenic process for tomb soils. Clay and silt content inclosed down to 30~40cm soil depth. The increase of clay was 13.4% in the 10cm surface soil and the estimated time for 1% increase of clay in the profile was about 112 years. There were great changes in chemical properties in the 10cm surface soil, and considerable accumiration of salts and increase of catiom exchange capacity(CEC) down to 30cm depth. The alteration of primary minerals and formation of clay minerals were great in the 10cm surface soil and considerably reconized down to 50~60cm. The result suggested that the development of soil profile from the tomb parent material for the period was 10cm under the forest environment in Korea. The parent material of tomb soil was considered to be transported greyish green clored diorite from other place.

  • PDF

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

The Iron Content of High and Low Productive Paddy Soil (고위(高位) 및 저위생산답(低位生産畓)에서의 철(鐵)의 함량(含量)에 관(關)하여)

  • O, Wang-Geun
    • Applied Biological Chemistry
    • /
    • v.1
    • /
    • pp.12-20
    • /
    • 1960
  • 고위생산답(高位生産畓) 22개(個)와 매년(每年) 호마엽고병(胡麻葉枯病)을 발생(發生)시키는 저위생산답(低位生産畓) 18개토양(個土壤)을 분석(分析)하고 활성철(活性鐵)과 열염산(熱鹽酸)에 녹는 철(鐵)의 분포상태(分布狀態)를 조사(調査)하였으며 그 결과(結果)는 아래와 같다. 1. 작토중(作土中)의 활성철(活性鐵)의 함량(含量)과 청취(聽取)한 정조수량간(正粗收量間)에는 밀접(密接)한 정상관(正相關) (${\gamma}=0.68$, 고등(高等)의 유의성(有意性)이 있음)이 있다. 2. 고위생산답(高位生産畓) 토양(土壤)의 활성철(活性鐵) 및 열염산가용철(熱鹽酸可溶鐵)은 저위생산답(低位生産畓) 토양(土壤)에서의 그것보다 현저(顯著)히 많았으며 각(各) 토양별(土壤別) I 층(層)의 그 평균함량(平均含量)과 열염산가용철(熱鹽酸可溶鐵)에 대(對)한 활성철(活性鐵)의 비율(比率)은 아래와 같다. 고위생산답(高位生産畓) 조사점수(調査點數) 활성철(活性鐵)% 활성철(活性鐵)/염산가용철(鹽酸可溶鐵) 잔적토(殘積土) 6 1.313 0.374 하성토(河成土) 9 1.334 0.335 해성토(海成土) 5 1.120 0.382 평균(平均) 20 1.224 0.359 저위생산답(低位生産畓) 조사점수(調査點數) 활성철(活性鐵)% 활성철(活性鐵)/염산가용철(鹽酸可溶鐵) 잔적토(殘積土) 5 1.15 0.370 하성토(河成土) 8 0.472 0.191 해성토(海成土) 5 1.068 0.362 평균(平均) 18 0.808 0.288 그러나 표(表)에서와 같이 잔적토(殘積土) 저위생산답(低位生産畓) 각층(各層)의 철(鐵)은 고위생산답(高位生産畓)에서 보다 낮지 않았다. 3. 해수(海水)의 영향(影響)을 받지 않은 고위생산답(高位生産畓)에서는 표층토(表層土)의 세탈(洗脫)이 적었으나 동(同) 저위생산답(低位生産畓) 및 해성토(海成土)에서는 그 세탈(洗脫)이 크고 동세탈물(同洗脫物)은 심층(心層)에 집적(集積)되여 있다. 4. 해성토(海成土)에서는 고위생산답(高位生産畓)이나 저위생산답(低位生産畓)을 막론(莫論)하고 집적층직하(集積層直下)에 활성철량(活性鐵量)이 심(甚)히 적은 층(層)이 있다. 그리고 집적층(集積層)은 고위생산답(高位生産畓)에서는 II-III층(層)(지표면(地表面)으로부터 60cm이내(以內))에 저위생산답(低位生産畓)에서는 I-II층(層)(지표면(地表面)으로부터 대개(大槪) 30cm이내(以內))에 위치(位置)한다. 5. 같은 고위생산답(高位生産畓) 및 저위생산답(低位生産畓)에서는 토성간(土性間)의 활성철함량(活性鐵含量)에 큰 차이(差異)가 없다. 6. 내산씨(內山氏)의 4개(個)기본(基本)토양형별(土壤型別)로는 동일(同一)토양형((土壤型)이라도 고위(高位) 저위생산답별(低位生産畓別)로 활성철(活性鐵)의 함량(含量)에는 차이(差異)가 크다.

  • PDF