• Title/Summary/Keyword: 표층 수온

Search Result 456, Processing Time 0.025 seconds

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula - Expansion of Coastal Waters and Its Effect on Temperature Variations in The South Sea of Korea - (한반도 근해의 해류와 해수 특성 -남해연안수 확장과 수온변화-)

  • NA Jung-Yul;HAN Sang-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.267-279
    • /
    • 1990
  • The temporal and spatial distribution of the coastal cold waters which was formed due to winter colling in the South Sea of Korea was analyzed by IR images from satellite and in situ data from shipboard observations. The coastal waters are known to be consisted of the Yellow Sea Coastal Waters(YSCW) and the South Korean Coastal Waters(SKCW). The former is driven around the Chuja-do and drifted into the Cheju Strait by residual currents, while the latter expands toward offsea by southward wind forcing. The expansion patterns of the SKCW were observed as sinking expansion or drifting expansion such that both were strongly dependent on the surface heat flux conditions. Under the condition of positive heat flux(warmer sea surface) or when the sea surface heat is lost to the atmosphere, the surface water started sinking and eventually expanded toward the open sea causing the cooling of the water column. For the negative heat flux the surface water was just drifted horizontally and expanded seaward and in this case only the surface layer of water was cooled.

  • PDF

Variation of Thermohaline Structure Around Ocean Area of Artificial Upwelling Structure (인공용승구조물 주변해역의 열염구조 변화)

  • Kim, Dong-Sun;Hwang, Suk-Bum;Kim, Sung-Hyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.1-7
    • /
    • 2007
  • To illustrate the variation of oceanic condition around artificial upwelling structure which is located in the South Sea of Korea, cm observations were carried out on December, 2005, April, August and October, 2006. Temperature, salinity and density(sigma-t) was nearly homogeneous through the whole depth by mixing of the seawater in winter. Stratification was not clear in spring, and it was only formed weakly in the surface layer shallower than 10m. Stratification was formed about $10{\sim}20$ m depth in summer and about $30{\sim}40$ m depth in autumn. Vertical gradient of temperature was larger than that in the part of western area along the artificial seamount in summer and autumn. The variation of stratification was also occurred around near the artificial structure area after set up structure.

  • PDF

Prediction of response of Ulsan coastal area using downscaling model (다운스케일링 기법을 이용한 울산만의 물리 특성 변화 예측)

  • Kim, Bo Ram;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.81-81
    • /
    • 2015
  • 전 지구적 기후변화는 대기-해양의 물리 특성을 변화시켜, 연안 및 하구의 수온상승과 염도 변화의 주요 원인이 되며, 생태 환경 및 다양한 경제 사회 문제를 야기 시킬 수 있다. 이러한 변화를 예측하고 영향을 최소화 하기위해서는 연안의 물리 특성을 세밀하고 정확하게 예측해야 한다. 그러나, 기후변화의 영향을 고려한 대기-해양 전 지구모델의 기후변화 시나리오는 우리나라와 같이 작고 복잡한 연안 지형을 가진 지역의 미래 환경 변화 예측에 적합하지 않다. 본 연구에서는 저해상도 정규격자 모형인 RIAMOM(RIAM Ocean Model)의 결과를 이용하여 비정규격자 모형인 FVCOM(Finite Volume Coastal Ocean Model)으로 울산만의 미래 물리 특성 변화를 상세 예측하였다. 기후변화로 인한 대기-해양의 물리 특성 변화를 고려하여 한국 주변해 및 연안을 대상으로 모의한 RIAMOM의 결과를, 본 연구의 대상 지역인 울산만 FVCOM 모델 경계에 초기 값과 시계열 자료로 사용하였다. FVCOM 모의 결과를 RIAMOM 자료와 비교 했을 때, 초기 표층 염분과 수온이 각각 0.4%, 2%의 오차를 보였다. 조위는 개방경계에서 01~0.4% 정도의 오차가 나타나, 다운스케일링(downscaling) 기법을 통한 수치 모의 결과가 초기 수온과 염분 및 조위 특성을 잘 재현하는 것으로 나타났다. 2001년(현 상태), 2050년(미래), 해수면 상승의 영향을 고려한 2050년에 대하여 모의 한 결과. 정규격자 모형인 RIAMOM에서 나타나지 않았던 기후변화로 인한 표층 염분과 수온의 상세한 변화가 울산만의 태화강 하구에서 나타났고, 염수쐐기의 길이 또한 상류쪽으로 증가하는 결과를 나타내었다. 다운스케일링을 통한 대상 지역의 상세 모델을 통해 기존의 예측 모델에서도출할 수 없던 결과를 나타낸 바, 향후 연구를 통해 지역의 장기 상세 환경 변화 예측에 활용할 수 있을 것으로 예상한다.

  • PDF

A Study on the summer mortality of Korean rockfish Sebastes schlegeli in Korea (하절기 조피볼락, Sebastes schlegeli의 대량폐사에 관한 고찰)

  • Choi, Hye-Sung;Myoung, Jeong-In;Park, Myoung-Ae;Cho, Mi-Young
    • Journal of fish pathology
    • /
    • v.22 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • The mass mortality of Korean rockfish, Sebastes schlegeli that occured at the fish farms in Tongyeong and Geoje City regions between late August and early September in 2006 was investigated. Sixty two fish showed no significant external symptoms except ulcerative lesions with reddish foci on the skin. From the internal observations and diagnosis results, some yellowish brown liver, intestine bleeding, atrophy and congestion in the abdominal cavity of the fish were found. In the gill, swelled filaments caused by foreign material accumulation and mucus secretion were observed. However, the main cause of the fish mass mortality in both sampling regions could be due to physiological weakness induced by significant change of water temperature causing by typhoon Wookong during the summer in 2006.

Consideration of Time Lag of Sea Surface Temperature due to Extreme Cold Wave - West Sea, South Sea - (한파에 따른 표층수온의 지연시간 고찰 - 서해, 남해 -)

  • Kim, Ju-Yeon;Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Han, In-Seong;Kwon, Mi-Ok;Song, Ji-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.701-707
    • /
    • 2021
  • In this study, we examined the sea surface temperature (SST), air temperature (AT), and their time lag in response to an extreme cold wave in 2018 and a weak cold wave in 2019, cross-correlating these to the northern wind direction frequency. The data used in this study include SST observations of seven ocean buoys Real-time Information System for Aquaculture Environment provided by the National Institute of Fisheries Science and automatic weather station AT near them recorded every hour; null data was interpolated. A finite impulse response filter was used to identify the appropriate data period. In the extreme cold wave in 2018, the seven locations indicated low SST caused by moving cold air through the northern wind direction. A warm cold wave in 2019, the locations showed that the AT data was similar to the normal AT data, but the SST data did not change notably. During the extreme cold wave of 2018, data showed a high correlation coefficient of about 0.7 and a time lag of about 14 hours between AT and SST; during the weak cold wave of 2019, the correlation coefficient was 0.44-0.67 and time lag about 20 hours between AT and SST. This research will contribute to rapid response to such climate phenomena while minimizing aquaculture damage.

Temporal Variation of Water Quality of the Western Chinhae Bay in Summer (진해만 서부해역의 하계 수질의 시간변동 특성)

  • Cho Hyeon-Seo;Lee Dae-In;Yoon Yang-Ho;Lee Moon-Ok;Kim Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • Temporal changes of Chl-α, physical and chemical factors were investigated by diurnal observation at 2-hour interval at three fixed stations in the western Chinhae Bay from 12 Aug. to 13 Aug. 1999. Difference of dissolved oxygen between surface and bottom layer was maximum when the thermocline were strong. Organic distribution such as COD was affected by the growth of phytoplankton. Limitting factor was nitrogen, that is, inorganic nitrogen plays a significant role on regulating the algal growth. Surface distribution of dissolved inorganic nitrogen was very low compared to bottom layer by uptake of organisms. Maximum value of Chl-α at station C2 and C11 were observed from subsurface layer, ranges of which exceeded possibility concentration of red tide outbreak, 10 mg/㎥. On the other hand, that of C15 exist at surface layer. In this area, DIN and DIP concentrations increased by input sources such as rainfall and benthic flux before the bloom of phytoplankton. Accumulation of phytoplankton occurred at subsurface layer by the rapid uptake of DIN, especially nitrate ion, when strong thermocline existed as approach to the afternoon, which led to the increase of organics in water column and oxygen deficiency water mass at bottom layer until late at evening. Since then, DIN increases gradually as water temperature decrease to minimum. The quantitative understanding of nitrogen of fluxed to and from the various sources is necessary for environmental management.

  • PDF

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.

Effect of Air Temperature Changes on Water Temperature and Hysteresis Phenomenon in Lake Paldang (기온 변화에 따른 팔당호 수온 영향 및 이력현상)

  • Yu, Soonju;Im, Jongkwon;Lee, Bomi
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.323-337
    • /
    • 2020
  • Long-term continuous data were used to investigate changes in air and water temperature and temperature hysteresis at Lake Paldang, the largest source of drinking water in South Korea. Based on the temperatures at Yangpyeong, near Lake Paldang, using a seasonal Mann-Kendall test, the rate of change of increase in temperature over the last 27 years (0.060℃/yr, 1993-2019) was higher than that of during 47 years (0.048℃/yr, 1973-2019). The air and water temperatures in Lake Paldang and its influent rivers had a high correlation (R > 0.9, p < 0.005); however, the water temperature increased at rate slower than the river water temperature, and the water temperature decreased slowly as the air temperature fell. The depth-averaged water temperature also changed more slowly than the surface water of the lake both when the air temperature was high and when it was low. This is likely because the lake has a larger area and a longer heat retention time than rivers, resulting in a greater hysteresis of water temperature at lake.

Consideration on Changes of Density Stratification in Saemangeum Reservoir (새만금호 내 밀도 성층 변화 고찰)

  • Oh, Chan-Sung;Choi, Jung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.81-93
    • /
    • 2015
  • The comprehensive master plan in November 2010 on Saemangeum internal development has been released, and there is a need for complementary measures related to in-situ monitoring methods in order to acquire water temperature (T) and salinity (S) data. Thus, these data are monitored and analyzed by Korea Rural Community Corporation continuously. The purposes of current study are to evaluate the distributions of seasonal T and S, sigma-t, and stratification parameter and to compare annual stratification system in 2011 and 2012. To achieve these objectives, monthly vertical changes of T, S, and sigma-t, which are reproduced by a kriging technique, have been analyzed. In summer, the temperature difference between surface and bottom layers varies from 2 to $3^{\circ}C$, and the stratification of T is considerably weak. The stratification of S occurs abruptly within depth of EL. (-)5 to EL. (-)10 m. Therefore, stratification is induced by sudden increasing of water inflow amount due to a localized downpour during the rainy season, and these stratification processes are strongly influenced by inflowing a fresh water from watersheds in estuary environment.

夏季 韓國 南東海域에서 湧昇과 關聯된 바람, 海水面 및 表層水溫의 變化 TEVARIATIONS OF SEA LEVEL AND SEA SURFACE TEPERATURE ASSOCIATED WITH WIND -INDUCED UPWELLING IN THE SOUTH

  • Lee, Jae Chul
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 1983
  • Extensive wind, sea level and sea surface temperature (SST) data collected along the east coast of Korea in 1973-1979 were used to ascribe the variations of sea level and SST associated with wind forcing during summer. Alongshore components of wind were dominant but the offshore components were little significance in the southeast coast in summer. The variations in SST and sea level adjusted barometricallyagreed with the upwelling-downwelling processes and showed a rapid response to wind.Appearance of cold water to the surface in the upwelling region concurred well with te periods of positive y-component wind when the tangential line at Ulgi was takem as the y-axis. In general, SST at Ulgi and Gampo as well as the adjusted sea level at Pohang, Ulsan and Busan decreased significantly when strong winds favorable for upwelling persisted for more then three days whereas they increased during the relaxation or unfavorable periods. The period of an upwelling event, on the average, was about 10 days and the mean speed of alongshore sind was 4.0m/sec.

  • PDF