• Title/Summary/Keyword: 표준 알고리즘

Search Result 1,666, Processing Time 0.026 seconds

Development of Multimedia Annotation and Retrieval System using MPEG-7 based Semantic Metadata Model (MPEG-7 기반 의미적 메타데이터 모델을 이용한 멀티미디어 주석 및 검색 시스템의 개발)

  • An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.573-584
    • /
    • 2007
  • As multimedia information recently increases fast, various types of retrieval of multimedia data are becoming issues of great importance. For the efficient multimedia data processing, semantics based retrieval techniques are required that can extract the meaning contents of multimedia data. Existing retrieval methods of multimedia data are annotation-based retrieval, feature-based retrieval and annotation and feature integration based retrieval. These systems take annotator a lot of efforts and time and we should perform complicated calculation for feature extraction. In addition. created data have shortcomings that we should go through static search that do not change. Also, user-friendly and semantic searching techniques are not supported. This paper proposes to develop S-MARS(Semantic Metadata-based Multimedia Annotation and Retrieval System) which can represent and extract multimedia data efficiently using MPEG-7. The system provides a graphical user interface for annotating, searching, and browsing multimedia data. It is implemented on the basis of the semantic metadata model to represent multimedia information. The semantic metadata about multimedia data is organized on the basis of multimedia description schema using XML schema that basically comply with the MPEG-7 standard. In conclusion. the proposed scheme can be easily implemented on any multimedia platforms supporting XML technology. It can be utilized to enable efficient semantic metadata sharing between systems, and it will contribute to improving the retrieval correctness and the user's satisfaction on embedding based multimedia retrieval algorithm method.

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

A Study on The RFID/WSN Integrated system for Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경을 위한 RFID/WSN 통합 관리 시스템에 관한 연구)

  • Park, Yong-Min;Lee, Jun-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.31-46
    • /
    • 2012
  • The most critical technology to implement ubiquitous health care is Ubiquitous Sensor Network (USN) technology which makes use of various sensor technologies, processor integration technology, and wireless network technology-Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN)-to easily gather and monitor actual physical environment information from a remote site. With the feature, the USN technology can make the information technology of the existing virtual space expanded to actual environments. However, although the RFID and the WSN have technical similarities and mutual effects, they have been recognized to be studied separately, and sufficient studies have not been conducted on the technical integration of the RFID and the WSN. Therefore, EPCglobal which realized the issue proposed the EPC Sensor Network to efficiently integrate and interoperate the RFID and WSN technologies based on the international standard EPCglobal network. The proposed EPC Sensor Network technology uses the Complex Event Processing method in the middleware to integrate data occurring through the RFID and the WSN in a single environment and to interoperate the events based on the EPCglobal network. However, as the EPC Sensor Network technology continuously performs its operation even in the case that the minimum conditions are not to be met to find complex events in the middleware, its operation cost rises. Moreover, since the technology is based on the EPCglobal network, it can neither perform its operation only for the sake of sensor data, nor connect or interoperate with each information system in which the most important information in the ubiquitous computing environment is saved. Therefore, to address the problems of the existing system, we proposed the design and implementation of USN integration management system. For this, we first proposed an integration system that manages RFID and WSN data based on Session Initiation Protocol (SIP). Secondly, we defined the minimum conditions of the complex events to detect unnecessary complex events in the middleware, and proposed an algorithm that can extract complex events only when the minimum conditions are to be met. To evaluate the performance of the proposed methods we implemented SIP-based integration management system.

Detection of Arctic Summer Melt Ponds Using ICESat-2 Altimetry Data (ICESat-2 고도계 자료를 활용한 여름철 북극 융빙호 탐지)

  • Han, Daehyeon;Kim, Young Jun;Jung, Sihun;Sim, Seongmun;Kim, Woohyeok;Jang, Eunna;Im, Jungho;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1177-1186
    • /
    • 2021
  • As the Arctic melt ponds play an important role in determining the interannual variation of the sea ice extent and changes in the Arctic environment, it is crucial to monitor the Arctic melt ponds with high accuracy. Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), which is the NASA's latest altimeter satellite based on the green laser (532 nm), observes the global surface elevation. When compared to the CryoSat-2 altimetry satellite whose along-track resolution is 250 m, ICESat-2 is highly expected to provide much more detailed information about Arctic melt ponds thanks to its high along-track resolution of 70 cm. The basic products of ICESat-2 are the surface height and the number of reflected photons. To aggregate the neighboring information of a specific ICESat-2 photon, the segments of photons with 10 m length were used. The standard deviation of the height and the total number of photons were calculated for each segment. As the melt ponds have the smoother surface than the sea ice, the lower variation of the height over melt ponds can make the melt ponds distinguished from the sea ice. When the melt ponds were extracted, the number of photons per segment was used to classify the melt ponds covered with open-water and specular ice. As photons are much more absorbed in the water-covered melt pondsthan the melt ponds with the specular ice, the number of photons persegment can distinguish the water- and ice-covered ponds. As a result, the suggested melt pond detection method was able to classify the sea ice, water-covered melt ponds, and ice-covered melt ponds. A qualitative analysis was conducted using the Sentinel-2 optical imagery. The suggested method successfully classified the water- and ice-covered ponds which were difficult to distinguish with Sentinel-2 optical images. Lastly, the pros and cons of the melt pond detection using satellite altimetry and optical images were discussed.

Experimental Design of S box and G function strong with attacks in SEED-type cipher (SEED 형식 암호에서 공격에 강한 S 박스와 G 함수의 실험적 설계)

  • 박창수;송홍복;조경연
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.123-136
    • /
    • 2004
  • In this paper, complexity and regularity of polynomial multiplication over $GF({2^n})$ are defined by using Hamming weight of rows and columns of the matrix ever GF(2) which represents polynomial multiplication. It is shown experimentally that in order to construct the block cipher robust against differential cryptanalysis, polynomial multiplication of substitution layer and the permutation layer should have high complexity and high regularity. With result of the experiment, a way of constituting S box and G function is suggested in the block cipher whose structure is similar to SEED, which is KOREA standard of 128-bit block cipher. S box can be formed with a nonlinear function and an affine transform. Nonlinear function must be strong with differential attack and linear attack, and it consists of an inverse number over $GF({2^8})$ which has neither a fixed pout, whose input and output are the same except 0 and 1, nor an opposite fixed number, whose output is one`s complement of the input. Affine transform can be constituted so that the input/output correlation can be the lowest and there can be no fixed point or opposite fixed point. G function undergoes linear transform with 4 S-box outputs using the matrix of 4${\times}$4 over $GF({2^8})$. The components in the matrix of linear transformation have high complexity and high regularity. Furthermore, G function can be constituted so that MDS(Maximum Distance Separable) code can be formed, SAC(Strict Avalanche Criterion) can be met, and there can be no weak input where a fixed point an opposite fixed point, and output can be two`s complement of input. The primitive polynomials of nonlinear function affine transform and linear transformation are different each other. The S box and G function suggested in this paper can be used as a constituent of the block cipher with high security, in that they are strong with differential attack and linear attack with no weak input and they are excellent at diffusion.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.

Performance Analysis and Comparison of Stream Ciphers for Secure Sensor Networks (안전한 센서 네트워크를 위한 스트림 암호의 성능 비교 분석)

  • Yun, Min;Na, Hyoung-Jun;Lee, Mun-Kyu;Park, Kun-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.3-16
    • /
    • 2008
  • A Wireless Sensor Network (WSN for short) is a wireless network consisting of distributed small devices which are called sensor nodes or motes. Recently, there has been an extensive research on WSN and also on its security. For secure storage and secure transmission of the sensed information, sensor nodes should be equipped with cryptographic algorithms. Moreover, these algorithms should be efficiently implemented since sensor nodes are highly resource-constrained devices. There are already some existing algorithms applicable to sensor nodes, including public key ciphers such as TinyECC and standard block ciphers such as AES. Stream ciphers, however, are still to be analyzed, since they were only recently standardized in the eSTREAM project. In this paper, we implement over the MicaZ platform nine software-based stream ciphers out of the ten in the second and final phases of the eSTREAM project, and we evaluate their performance. Especially, we apply several optimization techniques to six ciphers including SOSEMANUK, Salsa20 and Rabbit, which have survived after the final phase of the eSTREAM project. We also present the implementation results of hardware-oriented stream ciphers and AES-CFB fur reference. According to our experiment, the encryption speeds of these software-based stream ciphers are in the range of 31-406Kbps, thus most of these ciphers are fairly acceptable fur sensor nodes. In particular, the survivors, SOSEMANUK, Salsa20 and Rabbit, show the throughputs of 406Kbps, 176Kbps and 121Kbps using 70KB, 14KB and 22KB of ROM and 2811B, 799B and 755B of RAM, respectively. From the viewpoint of encryption speed, the performances of these ciphers are much better than that of the software-based AES, which shows the speed of 106Kbps.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.

LI-RADS Treatment Response versus Modified RECIST for Diagnosing Viable Hepatocellular Carcinoma after Locoregional Therapy: A Systematic Review and Meta-Analysis of Comparative Studies (국소 치료 후 잔존 간세포암의 진단을 위한 LI-RADS 치료 반응 알고리즘과 Modified RECIST 기준 간 비교: 비교 연구를 대상으로 한 체계적 문헌고찰과 메타분석)

  • Dong Hwan Kim;Bohyun Kim;Joon-Il Choi;Soon Nam Oh;Sung Eun Rha
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.331-343
    • /
    • 2022
  • Purpose To systematically compare the performance of liver imaging reporting and data system treatment response (LR-TR) with the modified Response Evaluation Criteria in Solid Tumors (mRECIST) for diagnosing viable hepatocellular carcinoma (HCC) treated with locoregional therapy (LRT). Materials and Methods Original studies of intra-individual comparisons between the diagnostic performance of LR-TR and mRECIST using dynamic contrast-enhanced CT or MRI were searched in MEDLINE and EMBASE, up to August 25, 2021. The reference standard for tumor viability was surgical pathology. The meta-analytic pooled sensitivity and specificity of the viable category using each criterion were calculated using a bivariate random-effects model and compared using bivariate meta-regression. Results For five eligible studies (430 patients with 631 treated observations), the pooled per-lesion sensitivities and specificities were 58% (95% confidence interval [CI], 45%-70%) and 93% (95% CI, 88%-96%) for the LR-TR viable category and 56% (95% CI, 42%-69%) and 86% (95% CI, 72%-94%) for the mRECIST viable category, respectively. The LR-TR viable category provided significantly higher pooled specificity (p < 0.01) than the mRECIST but comparable pooled sensitivity (p = 0.53). Conclusion The LR-TR algorithm demonstrated better specificity than mRECIST, without a significant difference in sensitivity for the diagnosis of pathologically viable HCC after LRT.