• Title/Summary/Keyword: 표준 거칠기 단면

Search Result 2, Processing Time 0.014 seconds

New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile (표준 거칠기 단면의 실험적 검증에 의한 새로운 거칠기 계수 및 전단강도 기준식)

  • Jang, Hyun-Sic;Sim, Min-Yong;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.561-577
    • /
    • 2021
  • The ten standard roughness profiles suggested by Barton and Choubey (1977) were extended to make three-dimensional (3D) joint models whose profiles were identical at any cross section. Replicas of joint models were produced using plaster of Paris, and direct shear tests were performed to verify the joint roughness coefficients (JRC) of the standard roughness profiles. Joint shear strengths measured by direct shear tests were compared with those predicted by the shear failure criterion suggested by Barton (1973) based on JRC, joint compressive strength (JCS), and joint basic friction angle (𝜙b). Shear strengths measured from joints of the first and fourth standard roughness profiles were close to predicted values; however, shear strengths measured from the other joint models were lower than predicted, the differences increasing as the roughness of joints increased. Back calculated values for JRC, JCS, and from the results of the direct shear tests show measured shear strengths were lower than predicted shear strengths because of the JRC values. New JRC were back calculated from the measured shear strength and named JRCm. Values of JRCm were lower than the JRC for the standard roughness profiles but show a strong linear relationship to JRC. Corrected JRCm values for the standard roughness profiles are provided and revised relationships between JRCm and JRC, and new shear strength criterion are suggested.

Estimation of Joint Roughness Coefficient(JRC) using Modified Divider Method (수정 분할자법을 이용한 절리 거칠기 계수(JRC)의 정량화)

  • Jang Hyun-Shic;Jang Bo-An;Kim Yul
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.269-280
    • /
    • 2005
  • We assigned points on surface of standard roughness profile by 0.1mm along the length and measured coordinates of points. Then, the lengths of profile were measured with different scales using modified divider method. The fractal dimensions and intercepts of slopes were determined by plotting the length vs scale in log-log scale. The fractal dimensions as well as intercepts of slopes show well correlation with joint roughness coefficients(JRC). However, multiplication of the kactal dimension by intercept show better correlation with IRC and we derived a new equation to estimate JRC from fractal dimension and intercept. The crossover length in which we can determine the correct fractal dimension was between 0.3-3.2mm. We measured joint roughness of 26 natural joints and calculated JRC using the equation suggested by Tse and Cruden(1979) and new equation derived by us. IRC values calculated by both equations are almost the same, indicating new equation is effective in measuring IRC.