• Title/Summary/Keyword: 표준유역

Search Result 232, Processing Time 0.016 seconds

Analysis on Probable Rainfall Intensity in Kyungpook Province (경북지방(慶北地方)의 확률(確率) 강우강도(降雨强度)에 대(對)한 분석(分析))

  • Suh, Seung Duk;Park, Seung Young
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.77-86
    • /
    • 1986
  • The purpose of this study is to estimate an optimum formula of rainfall intensity on basis of the characteristics for short period of rainfall duration in Kyungpook province for the design of urban sewerage and small basin drain system. Results studied are as follows; 1. The optimum method for Taegu and Pohang, Iwai's and Gumbel-Chow's method are recommended respectively. 2. The opotimum type of rainfall intensity for these area, $I=\frac{a}{\sqrt{t}+b}$ (Japanese type), is confirmed with 2.52~4.17 and 1.86~4.54 as a standard deviation for Taegu and Pohang respectively. The optimum formula of rainfall intensity are as follows. Taegu : T : 200 year - $I=\frac{824}{\sqrt{t}+1.5414}$ T : 100 year - $I=\frac{751}{\sqrt{t}+1.4902}$ T : 50 year - $I=\frac{678}{\sqrt{t}+1.4437}$ T : 30 year - $I=\frac{623}{\sqrt{t}+1.4017}$ T : 20 year - $I=\frac{580}{\sqrt{t}+1.3721}$ T : 10 year - $I=\frac{502}{\sqrt{t}+1.3145}$ T : 5 year - $I=\frac{418}{\sqrt{t}+1.2515}$ Pohang : T : 200 year - $I=\frac{468}{\sqrt{t}+1.1468}$ T : 100 year - $I=\frac{429}{\sqrt{t}+1.1605}$ T : 50 year - $I=\frac{391}{\sqrt{t}+1.1852}$ T : 30 year - $I=\frac{362}{\sqrt{t}+1.2033}$ T : 20 year - $I=\frac{339}{\sqrt{t}+1.2229}$ T : 10 year - $I=\frac{299}{\sqrt{t}+1.2578}$ T : 5 year - $I=\frac{257}{\sqrt{t}+1.3026}$ 3. Significant I.D.F. curves derived should be applied to estimate a suitable rainfall intensity and rainfall duration.

  • PDF

RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation (하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1339-1348
    • /
    • 2021
  • In accordance with the River Law, the basic river maintenance plan is established every 5-10 years with a considerable national budget for domestic rivers, and various river surveys such as the river section required for HEC-RAS simulation for flood level calculation are being conducted. However, river survey data are provided only in the form of a pdf report to the River Management Geographic Information System (RIMGIS), and the original data are distributedly owned by designers who performed the river maintenance plan in CAD format. It is a situation that the usability for other purposes is considerably lowered. In addition, when using surveyed CAD-type cross-sectional data for HEC-RAS, tools such as 'Dream' are used, but the reality is that time and cost are almost as close as manual work. In this study, RAUT (River Information Auto Upload Tool), a tool that can solve these problems, was developed. First, the RAUT tool attempted to automate the complicated steps of manually inputting CAD survey data and simulating the input data of the HEC-RAS one-dimensional model used in establishing the basic river plan in practice. Second, it is possible to directly read CAD survey data, which is river spatial information, and automatically upload it to the river spatial information DB based on the standard data model (ArcRiver), enabling the management of river survey data in the river maintenance plan at the national level. In other words, if RIMGIS uses a tool such as RAUT, it will be able to systematically manage national river survey data such as river section. The developed RAUT reads the river spatial information CAD data of the river maintenance master plan targeting the Jeju-do agar basin, builds it into a mySQL-based spatial DB, and automatically generates topographic data for HEC-RAS one-dimensional simulation from the built DB. A pilot process was implemented.