• Title/Summary/Keyword: 표준불확도

Search Result 183, Processing Time 0.024 seconds

Lateral Cephalometric Measurements of Class I Malocclusion Patients with Uncertainty (불확도를 고려한 Class I 부정교합 환자의 측방두부방사선영상 계측값)

  • Lee, Ji Min;Song, Ji-Soo;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Hojae;Cho, Hyo-Min;Shin, Teo Jeon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • The aim of this study was to obtain the traceability of the software used to analyze lateral cephalometry and to calculate the uncertainty of the measurements. Furthermore, this study aimed to provide a basis for obtaining standard references for measurement values for orthodontic treatment in children. Cephalometric data were collected from 100 children diagnosed with class I malocclusion between the ages 6 to 13 years who visited the pediatric dentist at Seoul National University Dental Hospital. To ensure traceability, a phantom device was created. Correction values were calculated by measuring the length and angle of the phantom device using the software. Type A uncertainty was calculated by obtaining the standard deviation of cephalometric measurements of 100 persons and the standard error of repeated measurements. Determination of the type B uncertainty was induced by minimum resolution and the position of the head. Using these, the combined standard uncertainty was obtained and the expanded uncertainty was calculated. The results of this study confirm that the currently used software has high accuracy and reliability. Furthermore, the uncertainty of orthodontic measurements in Korean children aged 6 to 13 years was calculated, and distribution range for class I malocclusion with 95% confidence interval was suggested.

Non-invasive Measurements of the Thickness of YBCO Thin Films by Using Microwave Resonators: Roles of the Uncertainty in the Calibration Film Thickness (마이크로파 공진기를 이용한 YBCO 박막 두께의 비파괴적 측정: 캘리브레이션 박막 두께의 불확도의 역할)

  • Kim, Myung-Su;Jung, Ho-Sang;Yang, Woo-Il;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Microwave metrology for the thickness of metallic or superconductive films provides a new way to measure the film thickness in a non-invasive way by using microwave resonators, with the measurement accuracy affected by standard uncertainties in the resonator quality factor, temperature-dependent resonant frequency and the dimensions of the resonators. Here we study effects of the standard uncertainty in the thickness, $t_{cal}$, of a calibration $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) film on the measured thicknesses, $t_{RF}$, by using a ~ 40 GHz microwave resonator. For the study, we used five YBCO films having the thicknesses of 70 - 360 nm, for which relative standard uncertainties in $t_{RF}$ due to that in $t_{cal}$ are obtained. The standard uncertainty in $t_{cal}$ was determined with the surface roughness of the film taken into account. It appeared that relative standard uncertainty in $t_{cal}$ significantly affects the $t_{RF}$ values, with the values of 1% (5%) in the former resulting in those of 1-2% (5-9%) for the latter at 10 K. Our results show that, for realizing relative standard uncertainties less than 5% in $t_{RF}$ for all the YBCO films, the surface roughness of the calibration films should be small enough to realize a relative standard uncertainty of less than 2.7% in $t_{cal}$.

A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System (기름 유량표준장치의 개발 및 측정 불확도에 관한 연구)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

Realization of Triple Point of Ne, $O_2$, Ar, Hg and $H_2O$ for International Comparison of Capsule-type Platinum Resistance Thermometer (캡슐형 백금저항온도계 국제비교를 위한 네온, 산소, 아르곤, 수은 및 물의 삼중점 실현)

  • Kang, Kee-Hoon;Kim, Yong-Gyoo;Gam, Kee-Sool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.153-162
    • /
    • 2000
  • Triple points of high purity materials have been used to calibrate primarily the capsule-type platinum resistance thermometer (PRT) in the temperature range of the triple point of equilibrium hydrogen (13.8033 K) and water (273.16 K). In this work, triple points of Ne, $O_2$, Ar, Hg and $H_2O$ except for the triple point of equilibrium hydrogen were realized to establish the International Temperature Scale of 1990 (ITS-90). At each fixed point, two capsule-type PRTs, which were selected for the international comparison, were tested two times. The combined uncertainties of the realization of each triple point were calculated considering the type A and type B evaluation. In Korea Research Institute of Standards and Science, the combined standard uncertainties of the defining triple Points by the ITS-90 were estimated to about 0.18 mK for Ne, 0.14 mK for $O_2$, 0.14 mK for Ar, 0.24 mK for Hg and 0.11 mK for $H_2O$, respectively.

  • PDF

Development of a Candidate Equipment for Ozone SRP and its Uncertainty Evaluation (오존 SRP 후보 기기의 제작과 측정 불확도 평가)

  • 정규백;이진홍;우진춘
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.113-114
    • /
    • 1999
  • 일차 오존 표준 분광기(SRP)를 제작하여 오존 측정의 정확성을 확보하고, 이것을 국가 표준으로 이용하여 현장 분석기를 차례로 교정하는 체계(그림 1 참조)를 구축하기 위하여, 먼저 자외선 흡광 광도법을 근간으로 하여 오존 SRP 후보 기기를 제작하였다.(중략)

  • PDF

Development of a Modified Maxwell Bridge for Precise Measurement of a 10 mH, 100 mH Inductance Standards (10 mH, 100 mH 인덕턴스 표준기 정밀측정용 Modified Maxwell Bridge 개발)

  • Kim, Han-Jun;Lee, Rae-Duk;Kang, Jeon-Hong;Semenov, Yu.P.;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.840-842
    • /
    • 2003
  • 저 주파수에서 인덕턴스 단위(H, Henry)는 전기용량의 단위(F, Farad)로부터 Maxwell bridge 또는 LC를 이용한 resonance 방법으로써 유도가 된다. 이중 Maxwell bridge 방법은 국가의 단위표준을 유지하는 연구소 또는 기관에서 가장 많이 사용되는 "product arm" 형의 bridge로 잘 알려져 있다. 개발된 bridge는 ratio-transformer를 전압공급 쪽(source)과 신호검출 쪽(detector)에 사용하여 종래의 Maxwell bridge 평형조절 시 main balance와 Wagner balance의 2개 과정을 진행하던 것과는 달리 main balance, source balance, detector balance의 과정을 진행함으로서 기존 bridge의 불안정한 ground admittance들의 영향에 의해 나타나는 불확도를 완전히 제거하였다. 한편 개발된 bridge는 10 mH, 100 mH를 10 nF의 전기용량표준기와 $1\;k{\Omega}$, $10\;k{\Omega}$의 저항표준기로부터 유도 되도록 제작되었으며. 10 mH의 경우 $400\;Hz{\sim}5\;kHz$의 주파수 영역에서 약 $2.2{\times}10^{-6}$(k=1)의 불확도로 인덕턴스 단위를 유도할 수가 있게 되었다.

  • PDF

Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System (장기 안정성을 고려한 경질유 유량표준장치 불확도 평가)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system

Uncertainty Evaluation of Viscosity Measurement Standards (점도 측정표준 불확도 평가)

  • Choi, H.M.;Yoon, B.R.;Lee, Y.B.;Choi, Y.M.;Lee, S.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.295-301
    • /
    • 2005
  • Viscosity measurement standards were evaluated according to ISO/IEC 17025. The step-up procedure was employed to calibrate a series of capillary type master viscometers. Uncertainty was calculated with evaluation of various uncertainty factors affected in viscosity measurement. The maximum expanded uncertainty(U) of the master viscometer was $3.0{\times}10^{-3}$(at the confidence level of 95 %). This evaluation example will be useful in viscosity measurement uncertainty determination of other standard measurement.

  • PDF