• Title/Summary/Keyword: 표정특징추출

Search Result 105, Processing Time 0.03 seconds

Facial Expression Feature Extraction for Expression Recognition (표정 인식을 위한 얼굴의 표정 특징 추출)

  • Kim, Young-Il;Kim, Jung-Hoon;Hong, Seok-Keun;Cho, Seok-Je
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.537-540
    • /
    • 2005
  • 본 논문에서는 사람의 감정, 건강상태, 정신상태등 다양한 정보를 포함하고 있는 웃음, 슬픔, 졸림, 놀람, 윙크, 무표정 등의 표정을 인식하기 위한 표정의 특징이 되는 얼굴의 국부적 요소인 눈과 입을 검출하여 표정의 특징을 추출한다. 표정 특징의 추출을 위한 전체적인 알고리즘 과정으로는 입력영상으로부터 칼라 정보를 이용하여 얼굴 영역을 검출하여 얼굴에서 특징점의 위치 정보를 이용하여 국부적 요소인 특징점 눈과 입을 추출한다. 이러한 특징점 추출 과정에서는 에지, 이진화, 모폴로지, 레이블링 등의 전처리 알고리즘을 적용한다. 레이블 영역의 크기를 이용하여 얼굴에서 눈, 눈썹, 코, 입 등의 1차 특징점을 추출하고 누적 히스토그램 값과 구조적인 위치 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확한 눈과 입을 추출한다. 표정 변화에 대한 표정의 특징을 정량적으로 측정하기 위해 추출된 특징점 눈과 입의 눈과 입의 크기와 면적, 미간 사이의 거리 그리고 눈에서 입까지의 거리 등 기하학적 정보를 이용하여 6가지 표정에 대한 표정의 특징을 추출한다.

  • PDF

Recognition of Facial Expressions using Geometrical Features (기하학적인 특징 추출을 이용한 얼굴 표정인식)

  • 신영숙;이일병
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.205-208
    • /
    • 1997
  • 본 연구는 기하학적인 특징 추출을 기반으로 얼굴 영상에서 얼굴표정을 인식하는 방법을 제시한다. 얼굴표정은 3가지 그룹으로 제한한다(무표정, 기쁨, 놀람). 표정에 관련된 기본 특징들을 추출하기 위하여 얼굴표정정영상에서 눈높이, 눈폭, 입높이, 입폭을 추출하여 데이터를 분석한다. 분석결과로 눈높이, 입폭, 입높이가 표정을 분별하는 주요 특징으로 추출되었다. 각 표정별 눈높이, 입폭, 입높이가 표정을 분별하는 주요 특징으로 추출되었다. 각 표정별 눈높이, 입폭, 입높이의 평균과 표준편차를 구하여 표정별 표준 템플릿을 작성하였다. 표정인식 방법은 최소 근접 분류기(nearest neighbor classifier)를 사용하였다. 새로운 얼굴표정 영상과 표준 템플릿간의 유클리드 거리를 계산하여 새로운 표정에 대하여 83%인식률을 얻었다.

  • PDF

Face Expression Recognition Algorithm Using Geometrical Properties of Face Features and Accumulated Histogram (얼굴 특징자들의 구조적 특성과 누적 히스토그램을 이용한 얼굴 표정 인식 알고리즘)

  • 김영일;이응주
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 얼굴의 구조적 특성과 누적 히스토그램을 이용하여 다양한 정보를 포함하고 있는 얼굴의 6가지 표정을 인식하는 알고리즘을 기술하였다. 표정 인식을 위해 특징점 추출 전처리 과정으로 입력 영상으로부터 에지 추출, 이진화, 잡음 제거, 모폴로지 기법을 이용한 팽창, 레이블링 순으로 적용한다. 본 논문은 레이블 영역의 크기를 이용해 1차 특징점 영역을 추출하고 가로방향의 누적 히스토그램 값과 대칭성의 구조적인 관계를 이용하여 2차 특징점 추출 과정을 거쳐 정확하게 눈과 입을 찾아낸다. 또한 표정 변화를 정량적으로 측정하기 위해 추출된 특징점들의 눈과 입의 크기, 미간 사이의 거리 그리고 눈에서 입까지의 거리 정보를 이용하여 표정을 인식한다. 1, 2차 특징점 추출 과정을 거치므로 추출률이 매우 높고 특징점들의 표정에 따른 변화 거리를 이용하므로 표정 인식률이 높다. 본 논문은 안경 착용 영상과 같이 복잡한 얼굴 영상에서도 표정 인식이 가능하다.

  • PDF

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

Tracking of Facial Feature Points related to Facial Expressions (표정변화에 따른 얼굴 표정요소의 특징점 추적)

  • 최명근;정현숙;신영숙;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

얼굴 표정 인식 기술

  • Heo, Gyeong-Mu;Gang, Su-Min
    • ICROS
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2014
  • 얼굴 표정 인식은 인간 중심의 human-machine 인터페이스의 가장 중요한 요소 중 하나이다. 현재의 얼굴 표정 인식 기술은 주로 얼굴 영상을 이용하여 특징을 추출하고 이를 미리 학습시킨 인식 모델을 통하여 각 감정의 범주로 분류한다. 본 논문에서는 이러한 얼굴 표정 인식 기술에 사용되는 표정 특징 추출 기법과 표정 분류 기법을 설명하고, 각 기법에서 많이 사용되고 있는 방법들을 간략히 정리한다. 또한 각 기법의 특징들을 나열하였다. 또한 실제적 응용을 위해서 고려해야할 사항들에 대하여 제시하였다. 얼굴 표정 인식 기술은 인간 중심의 human-machine 인터페이스를 제공할 뿐만 아니라 로봇 분야에서도 활용 가능할 것으로 전망한다.

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Facial Expression Recognition using the geometric features of the face (얼굴의 기하학적 특징을 이용한 표정 인식)

  • Woo, hyo-jeong;Lee, seul-gi;Kim, dong-woo;Song, Yeong-Jun;Ahn, jae-hyeong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.289-290
    • /
    • 2013
  • 이 논문은 얼굴의 기하학적 특징을 이용한 표정인식 시스템을 제안한다. 먼저 얼굴 인식 시스템으로 Haar-like feature의 특징 마스크를 이용한 방법을 적용하였다 인식된 얼굴은 눈을 포함하고 있는 얼굴 상위 부분과 입을 포함하고 있는 얼굴 하위 부분으로 분리한다. 그래서 얼굴 요소 추출에 용이하게 된다. 얼굴 요소 추출은 PCA를 통한 고유 얼굴의 고유 눈과 고유 입의 템플릿 매칭으로 추출하였다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징을 통하여 표정을 인식한다. 눈과 입의 특징 값은 실험을 통하여 정한 각 표정별 임계 값과 비교하여 표정이 인식된다. 본 논문은 기존의 논문에서 거의 사용하지 않는 눈동자의 비율을 적용하여 기존의 표정인식 알고리즘보다 인식률을 높이는 방향으로 제안되었다. 실험결과 기존의 논문보다 인식률이 개선됨을 확인 할 수 있었다.

  • PDF

Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features (표정별 가버 웨이블릿 주성분특징을 이용한 실시간 표정 인식 시스템)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.821-827
    • /
    • 2009
  • Human emotion can be reflected by their facial expressions. So, it is one of good ways to understand people's emotions by recognizing their facial expressions. General recognition system of facial expressions had selected interesting points, and then only extracted features without analyzing physical meanings. They takes a long time to find interesting points, and it is hard to estimate accurate positions of these feature points. And in order to implement a recognition system of facial expressions on real-time embedded system, it is needed to simplify the algorithm and reduce the using resources. In this paper, we propose a real-time recognition algorithm of facial expressions that project the grid points on an expression space based on Gabor wavelet feature. Facial expression is simply described by feature vectors on the expression space, and is classified by an neural network with its resources dramatically reduced. The proposed system deals 5 expressions: anger, happiness, neutral, sadness, and surprise. In experiment, average execution time is 10.251 ms and recognition rate is measured as 87~93%.