• Title/Summary/Keyword: 표적융합

Search Result 139, Processing Time 0.021 seconds

Estimation Techniques for Three-Dimensional Target Location Based on Linear Least Squared Error Algorithm (선형 최소제곱오차 알고리즘을 응용한 3차원 표적 위치 추정 기법)

  • Han, Jeong Jae;Jung, Yoonhwan;Noh, Sanguk;Park, So Ryoung;Kang, Dokeun;Choi, Wonkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.715-722
    • /
    • 2016
  • In this paper, by applying the linear least squared error algorithm, we derive an estimation technique for three dimensional target location when a number of radars are used in detecting a target. The proposed technique is then enhanced by combining GPS information and by assigning variable weights to information sources. The enhanced performance of proposed techniques is confirmed via simulation. It is also observed from simulation results that the performance is robust to the uncertainty of information.

Small Target Detection in Multi-Resolution Image Using Facet Model (다중 해상도 영상에서 페이싯 모델을 이용한 초소형 표적 검출)

  • Park, Ji-Hwan;Lee, Min-Woo;Lee, Chul-Hun;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • In this paper, we propose the technique to detect the location and size of the small target in multi-resolution image using cubic facet model. The input image is reduced by the multi-resolution and we obtain the multi-resolution images. We apply the facet model and the local maxima conditions to the multi-resolution images of each level. And then, we detect the location of the small target. We estimate that the location at the maximum of the $D_2$ which means the local maxima value of the facet model in the multi-resolution images is the location of the small target. We can detect the small target of the various size about the multi-resolution images of each level. In this paper, we experimented in the various infrared images with the small target. The method using the typical facet model applies a mask. However, the proposed method applies a mask in the multi-resolution images. We verified to vary the mask size and differ the size of the small target. The proposed algorithm can detect the location and size of the small target.

Moving Target Detection based on Frame Subtraction and Morphological filter with Drone Imaging (프레임 감산과 형태학적 필터를 이용한 드론 영상의 이동표적의 검출)

  • Lee, Min-Hyuck;Yeom, SeokWon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.192-198
    • /
    • 2018
  • Recently, the use of drone has been increasing rapidly in many ways. A drone can capture remote objects efficiently so it is suitable for surveillance and security systems. This paper discusses three methods for detecting moving vehicles using a drone. We compare three target detection methods using a background frame, preceding frames, or moving average frames. They are subtracted from a current frame. After the frame subtraction, morphological filters are applied to increase the detection rate and reduce the false alarm rate. In addition, the false alarm region is removed based on the true size of targets. In the experiments, three moving vehicles were captured by a drone, and the detection rate and the false alarm rate were obtained by three different methods and the results are compared.

A Study on the Seeker Technology in Guided Weapon System (유도무기체계 탐색기 기술에 관한 연구)

  • Lee, Young-Uk
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • In this paper, a study on the seeker technology in guided weapon system development. Seeker is guided weapons mounted on the device that is targeted for implementation homing guided looking for confirmation of the target after picking up, tracking, command, induce calculations necessary to induce the target's direction or control device to provide location information to perform a series of features. Therefore, the Seeker is guided weapons systems and important device that determines the performance of one guided control. Explorer is a tactical and strategy guided weapons from different goals and specifications of weapons systems development and encourage economic efficiency, Interoperability, designed to improve the reliability and hit requirements and the more numerous. Therefore, this research through the Explorer's attributes and weapons systems encourage the development direction of the technical details of the offer.

  • PDF

Detection of Group of Targets Using High Resolution Satellite SAR and EO Images (고해상도 SAR 영상 및 EO 영상을 이용한 표적군 검출 기법 개발)

  • Kim, So-Yeon;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • In this study, the target detection using both high-resolution satellite SAR and Elecro-Optical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/$64km^2$ and the false alarms of single target range from 0.03 to 0.3 targets/$km^2$. The results show that groups of targets are successfully identified with very low false alarms.

Location Estimation for Multiple Targets Using Tree Search Algorithms under Cooperative Surveillance of Multiple Robots (다중로봇 협업감시 시스템에서 트리 탐색 기법을 활용한 다중표적 위치 좌표 추정)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.782-791
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots. In order to match up targets with measured azimuths, we apply the maximum likelihood (ML), depth-first, and breadth-first tree search algorithms, in which we use the measured azimuths and the number of pixels on IR screen for pruning branches and selecting candidates. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the probability of missing target, mean of the number of calculating nodes, and mean error of the estimated coordinates of the proposed algorithms.

A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features (형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법)

  • Yang, Dong Won
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.97-105
    • /
    • 2020
  • A thermal imaging sensor receives the radiating energy from the target and the background, so it has been widely used for detection, tracking, and classification of targets at night for military purpose. In recognizing the target automatically using thermal images, if the correct edges of object are used then it can generate the classification results with high accuracy. However since the thermal images have lower spatial resolution and more blurred edges than color images, the accuracy of the classification using thermal images can be decreased. In this paper, to overcome this problem, a new hierarchical classifier using both shape and local features based on the segmentation reliabilities, and the class/pose updating method for vehicle classification are proposed. The proposed classification method was validated using thermal video sequences of more than 20,000 images which include four types of military vehicles - main battle tank, armored personnel carrier, military truck, and estate car. The experiment results showed that the proposed method outperformed the state-of-the-arts methods in classification accuracy.

Mutiple Target Angle Tracking Algorithm Based on measurement Fusion (측정치 융합에 기반을 둔 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Ryu et al. proposed a multiple target angle tracking algorithm using the angular measurement obtained from the signal subspace estimated by the output of sensor array. Ryu's algorithm has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio, and it uses the angular measurement obtained from the signal subspace of sampling time, even though the signal subspace is continuously updated by the output of sensor array. For improving the tracking performance of Ryu's algorithm, a measurement fusion method is derived based on ML(Maximum Likelihood) in this paper, and it admits us to use the angular measurements obtained form the adjacent signal subspaces as well as the signal subspace of sampling time. The new target angle tracking algorithm is proposed using the derived measurement fusion method. The proposed algorithm has a better tracking performance than that of Ryu's algorithm and it sustains the good features of Ryu's algorithm.

A study on DEMONgram frequency line extraction method using deep learning (딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구)

  • Wonsik Shin;Hyuckjong Kwon;Hoseok Sul;Won Shin;Hyunsuk Ko;Taek-Lyul Song;Da-Sol Kim;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.78-88
    • /
    • 2024
  • Ship-radiated noise received by passive sonar that can measure underwater noise can be identified and classified ship using Detection of Envelope Modulation on Noise (DEMON) analysis. However, in a low Signal-to-Noise Ratio (SNR) environment, it is difficult to analyze and identify the target frequency line containing ship information in the DEMONgram. In this paper, we conducted a study to extract target frequency lines using semantic segmentation among deep learning techniques for more accurate target identification in a low SNR environment. The semantic segmentation models U-Net, UNet++, and DeepLabv3+ were trained and evaluated using simulated DEMONgram data generated by changing SNR and fundamental frequency, and the DEMONgram prediction performance of DeepShip, a dataset of ship-radiated noise recordings on the strait of Georgia in Canada, was compared using the trained models. As a result of evaluating the trained model with the simulated DEMONgram, it was confirmed that U-Net had the highest performance and that it was possible to extract the target frequency line of the DEMONgram made by DeepShip to some extent.

The Effect of Accommodation Cue Manipulation at Stereoscopic Display on Binocular Fusion (양안식 디스플레이에 제시되는 자극의 조절단서 조작이 양안융합에 미치는 영향)

  • Park, Jong-Jin;Kim, Shinwoo;Li, Hyung-Chul O.
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.569-580
    • /
    • 2022
  • In this study, we investigated the effect of peripheral blur on binocular fusion to resolve binocular fusion failure which is one of the 3D visual fatigues in the perspective of human visual system. With stimulus having discrete disparity change, binocular fusion failure rate for target stimulus having crossed and uncrossed disparity decreased. And target stimulus having continuous disparity also required relatively larger binocular disparity when peripheral blur was presented with target stimulus rather than when peripheral blur was not presented. These results imply that peripheral blur facilitated binocular fusion in the situation of binocular disparity change, and suggest that considering the characteristics of human three-dimensional visual systems, manipulating 3D contents can improve visual discomfort caused by binocular displays at low costs.