• Title/Summary/Keyword: 표본반응모형

Search Result 51, Processing Time 0.023 seconds

Application of Central Composite Design in Simulation Experiment (시뮬레이션 실험에서 중심합성계획의 응용)

  • 권치명
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.41-47
    • /
    • 2004
  • 중심합성계획(central composite design: ccd)은 반응 표면이 곡면적인 특성을 나타낼때 반응 공간을 추정하기 위해 사용되는 실험계획이다. 반응공간이 2차 회귀모형으로 나타나는 경우에 반응곡면의 변화량을 알기 위해서는 변수의 수준이 3이상이 되어야하는데 ccd는 적은 횟수의 실험으로 곡면을 효과적으로 추정하기 위해 2$^{k}$ 요인실험에 추가적으로 중심점(central point)과 축점(axial point)을 표본점에 포함시키는 계획이다. 본 연구에서는 시뮬레이션 실험에서 반응변수가 2차 회귀모형으로 근사되는 경우에 cod를 이용하여 관심 성과치의 반응표면을 추정하고자 한다. 일반적인 실험에서와는 달리 시뮬레이션 실험에서는 두개의 표본점(인자 수준의 조합)에서 분석자가 공통 난수계열(common random number series)을 부여하여 시뮬레이션 시스템 요소의 변화과정을 유사하게 통제할 수 있다. 일반적으로 공통난수법(common random number method)에 의해 얻어지는 두 표본점에서의 반응변수는 서로 양의 상관관계를 가지며 대조 난수(antithetic random number)에 의한 두 반응변수는 음의 상관성을 가지는 것으로 알려졌다. 본 연구는 ccd의 표본점에 공통난수와 대조난수 법을 이용하여 회귀모형의 파라미터를 효과적으로 추정하는 방법을 조사하고 이를 (s, S) 재고관리 모형에 적용하여 그 효율성을 평가하고자 한다.

  • PDF

A Study on the Adjustment of Posterior Probability for Oversampling when the Target is Rare (목표 범주가 희귀한 자료의 과대표본추출에 대한 연구)

  • Kim, U.N.;Lee, S.K.;Choi, J.H.
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.477-484
    • /
    • 2011
  • When an event of target variable is rare, a widespread strategy is to build a model on the sample that disproportionally over-represents the events, that is over-sampled. Using the data over-sampled from the original data set, the predicted values would be biased; however, it can be easily corrected to represent the population. In this study, we investigate into the relationship between the proportion of rare event on a data-mart and the model performance using real world data of a Korean credit card company. Also, we use the methods for adjusting of posterior probability for over-sampled data of the offset method and the weighted method. Finally, we compare the performance of the methods using real data sets.

분석용 정밀 워게임모형의 통계적 진단 및 활용

  • 김윤태;고원;박혜련
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.117-121
    • /
    • 2004
  • 분석용 정밀 워게임 시뮬레이션 모형에서는 '모형운영 결과와 실제(또는 실험) 결과를 비교' 하는 통상적인 타당성 척도의 적용이 불가능함에 따라 워게임모형 운영환경에 적합한 새로운 개념의 타당성 척도로서 VEA(Validity for Exploratory Analysis), VSA(Validity subject to Assumption) 등의 개념을 도입하고 이를 탐색적으로 점검하는 방안을 제시한다. 분석용 워게임모형 활용에 있어 또 하나의 걸림돌은 1)시나리오 및 상황의 가변성, 2)무기체계 및 장비 성능에 대한 불확실성, 3)묘사범위 제한 및 논리의 부정확성으로 인한 오류 등으로 엄청난 불확실성(uncertainty)을 기본적으로 내포함에 따라 구체적 의사결정을 위한 종합적 결론 도출이 어렵다는 점이다. 본 연구에서는 이를 메타모델(Meta model) 즉 워게임모형 입출력 자료의 관계를 묘사한 통계적 모형을 구축하고 이를 기반으로 다양한 불확실성 하에서 관심변수간의 관계를 종합적으로 도출하고자 하는 '관련공간모의(Relevant Simulation)' 방안을 제시한다. 이와 같은 방안들은 SVAP(Statistical Validation and Aggregation Procedure)라는 하나의 종합된 절차로서 제시된다.

  • PDF

포아송 반응을 갖는 로그 선형 회귀 모형에 대한 최우추정량과 모의실험 연구

  • 한정혜;조중재
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.22-31
    • /
    • 1995
  • 본 논문에서는 포아송 반응을 갖는 로그 선형 회귀 모형에 붙스트랩 방법을 이용하여, 여러가지 통계적 추론을 위한 유용한 확률적 결과들을 연구.소개하고, 모의실험을 통한 소표본 성질들을 다양하게 제시하고자 한다. 특히 로그 선형 회귀 모형에 대한 최우 추정량 $\hat{\beta_n}$ 및 정보행렬 I(${\beta}_0$)의 추정량들 $I_1(\hat{\beta_n}{\cdot}X)$$I_2(\hat{\beta_n}{\cdot}X)$에 대한 일치성 및 정규성등의 확률적 성질들, 그리고 붙스트랩 방법을 적용한 대표본 성질들과 관련하여 여러가지 모의실험 결과들을 분석.연구하였다.

  • PDF

An Application of Response Surface Experiments to Control the Quality of Industrial Products : Model Fitting and Prediction of Responses (공업제품의 질을 관리하기 위한 반응표면 실험의 응용 - 통계적 모형 적합과 반응의 예측을 중심으로 -)

  • Park, Seong-Hyeon
    • Journal of Korean Society for Quality Management
    • /
    • v.6 no.1
    • /
    • pp.14-17
    • /
    • 1978
  • In response surface experiments, a polynomial regression model is often used to fit the response surface to explore the functional relationship between a response variable and several independent variables, and to determine the optimum operating conditions, which would be desirable to control the quality of industrial products. The problem considered in this paper is that of selecting subsets of polynomial terms from a given polynomial model so as to achieve "improved" response surfaces in estimation of the response. Such improvement in fitting the response surfaces would be very helpful to determine the optimum operating conditions and to explore the functional relationship with better precision. A criterion is proposed for selection of polynomial terms and illustrated with an industrial example.

  • PDF

Small Sample Characteristics of Generalized Estimating Equations for Categorical Repeated Measurements (범주형 반복측정자료를 위한 일반화 추정방정식의 소표본 특성)

  • 김동욱;김재직
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.297-310
    • /
    • 2002
  • Liang and Zeger proposed generalized estimating equations(GEE) for analyzing repeated data which is discrete or continuous. GEE model can be extended to model for repeated categorical data and its estimator has asymptotic multivariate normal distribution in large sample sizes. But GEE is based on large sample asymptotic theory. In this paper, we study the properties of GEE estimators for repeated ordinal data in small sample sizes. We generate ordinal repeated measurements for two groups using two methods. Through Monte Carlo simulation studies we investigate the empirical type 1 error rates, powers, relative efficiencies of the GEE estimators, the effect of unequal sample size of two groups, and the performance of variance estimators for polytomous ordinal response variables, especially in small sample sizes.

Nonlinear impact of temperature change on electricity demand: estimation and prediction using partial linear model (기온변화가 전력수요에 미치는 비선형적 영향: 부분선형모형을 이용한 추정과 예측)

  • Park, Jiwon;Seo, Byeongseon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.703-720
    • /
    • 2019
  • The influence of temperature on electricity demand is increasing due to extreme weather and climate change, and the climate impacts involves nonlinearity, asymmetry and complexity. Considering changes in government energy policy and the development of the fourth industrial revolution, it is important to assess the climate effect more accurately for stable management of electricity supply and demand. This study aims to analyze the effect of temperature change on electricity demand using the partial linear model. The main results obtained using the time-unit high frequency data for meteorological variables and electricity consumption are as follows. Estimation results show that the relationship between temperature change and electricity demand involves complexity, nonlinearity and asymmetry, which reflects the nonlinear effect of extreme weather. The prediction accuracy of in-sample and out-of-sample electricity forecasting using the partial linear model evidences better predictive accuracy than the conventional model based on the heating and cooling degree days. Diebold-Mariano test confirms significance of the predictive accuracy of the partial linear model.

The ex-Gaussian analysis of reaction time distributions for cognitive experiments (ex-Gaussian 모형을 활용한 인지적 과제의 반응시간 분포 분석)

  • Park, Hyung-Bum;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2014
  • Although most behavioral reaction times (RTs) for cognitive tasks exhibit positively skewed distributions, the majority of studies primarily rely on a measure of central tendency (e.g. mean) which can cause misinterpretations of data's underlying property. The purpose of current study is to introduce procedures for describing characteristics of RT distributions, thereby effectively examine the influence of experimental manipulations. On the basis of assumption that RT distribution can be represented as a convolution of Gaussian and exponential variables, we fitted the ex-Gaussian function under a maximum-likelihood method. The ex-Gaussian function provides quantitative parameters of distributional properties and the probability density functions. Here we exemplified distributional analysis by using empirical RT data from two conventional visual search tasks, and attempted theoretical interpretation for setsize effect leading proportional mean RT delays. We believe that distributional RT analysis with a mathematical function beyond the central tendency estimates could provide insights into various theoretical and individual difference studies.

Analysis of Crop Survey Protocols to Support Parameter Calibration and Verification for Crop Models of Major Vegetables (주요 채소 작물 대상 작물 모형 모수 추정 및 검증을 지원하기 위한 생육 조사 프로토콜 분석)

  • Kim, Kwang Soo;Kim, Junhwan;Hyun, Shinwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • Crop models have been used to predict vegetable crop yield, which would have a considerable economic impact on consumers as well as producers. A small number of models have been developed to estimate growth and yield of vegetables due to limited availability of growth observation data in high-quality. In this study, we aimed to analyze the protocols designed for collection of the observation data for major vegetable crops including cabbage, radish, garlic, onion and pepper. We also designed the protocols suitable for development and verification of a vegetable crop growth model. In particular, different measures were proposed to improve the existing protocol used by Statistics Korea (KOSTAT) and Rural Development Administration (RDA), which would enhance reliability of parameter estimation for the crop model. It would be advantageous to select sampling sites in areas where reliable weather observation data can be obtained because crop models quantify the response of crop growth to given weather conditions. It is recommended to choose multiple sampling sites where climate conditions would differ. It is crucial to collect time series data for comparison between observed and simulated crop growth and yield. A crop model can be developed to predict actual yield rather than attainable yield using data for crop damage caused by diseases and pests as well as weather anomalies. A bigdata platform where the observation data are to be shared would facilitate the development of crop models for vegetable crops.

금융실명제 실시가 비기대이익의 분산과 이익반응계수에 미치는 영향에 관한 실증적 연구

  • Kim, Myeong-Gyun;Kim, Byeong-Ho;Choi, In
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.163-184
    • /
    • 1995
  • 본 논문은 금융실명제가 기업에서 발표하는 회계학적 이익정보에 대한 주식가격의 변화에 미치는 영향을 분석하였다. 이는 금융실명제실시 이후에는 기업에서 창출해 내는 기업이익이 진정한 이익에 보다 더 접근을 할 것이라 예상과 채무분석가의 기업이익에 대한 예측치는 진정한 이익에 대한 예측치이므로 금융실명제 실시 이후에는 예측오차가 감소할 것이다는 일반적 예상을 검증하기 위한 것이다. 본 논문은 먼저 1992년과 1993년 12월 결산기업에 대하여 비기대이익을 계산하여 두 해에서의 차이를 분석하였고, 계산된 비기대이익과 기업이익 공시시점에서의 비정상수익율과의 관계를 회귀분석을 통하여 분석하였다. 채무분석가의 예측치로서 대우경제연구소에서 1992년과 1993년 12월에 각각 발표한 각 상장기업의 이익에 대한1992년 및 1993년의 예상치를 각각 년도의 예상기업 이익으로 사용하고 실제로 1993년과 1994년 초에 공시되는 기업이익과의 차이를 조사하였다. 비정상수익율의 계산은 시장위험조정모형과 시장조정모형을 사용하였고 일별수익율에 의하여 측정하였다. 사건 시점은 주주총회 일을 중심으로하여 여러 사건 기간을 택하여 분석을 하였다. 실증적 분석 결과를 보면, 전체표본을 대상으로한 재무분석가의 추정치에 의하여 계산된 비기대이익의 분산이 금융실명제 실시 이후가 실시 이전에 비하여 더 크게 나타났다. 이러한 결과는 금융실명제의 실시로 인하여 재무분석가의 예측이 오히려 더 부정확하게 나타난 것이라 할 수 있다. 이러한 결과는 실명제 실시에 따라서 기업이익예측에 대한 불확실성이 더 증가를 하여 기업이익 공시시점에서의 비기대이익의 측정에서의 오차가 오히려 증가하였다는 것을 알 수 있다. 그러나 전체표본을 소그룹으로 나누어서, 1부에 속한 기업들과 대형 주기업들을 대상으로한 분석에서는 이 두 소그룹에 속한 기업들이 각각 금융실명제실시 이후가 금융실명제 실시 이전보다 비기대이익의 분산이 작게 나타났다. 이러한 결과는 1부에 속한 기업들과 대형주기업들에서 는 금융실명제실시로 채무분석가들의 이익 예측치가 더 정확성을 지니게 된 것으로 해석된다. 이익반응계수의 추정에서 예상했던 바와는 반대로 금융실명제 실시 이후에 계수의 크기가 오히려 감소하였다. 소그룹으로 나누어서 분석한 결과도 마찬가지였다. 금융실명제 실시가 기업회계이익에 미친 영향은 비기대이익의 측정을 통하여 일부 가설과 일치하는 결과를 얻었고, 이익반응계수의 측정에서는 가설과 일치하는 결과를 얻지 못하였다.

  • PDF