• Title/Summary/Keyword: 표면 화학특성

Search Result 2,411, Processing Time 0.032 seconds

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea (전라남도 나주시 동강면 일대 황토(풍화잔류토)의 토양학적 및 광물학적 특성 연구)

  • Kim, Yumi;Bae, Jo-Ri;Kim, Cheong-Bin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • The objectives of this study were to characterize the physicochemical properties and mineralogy of Hwangto (yellow residual soils) from the southwestern part of Korea and to understand the soil-forming processes of the residual soils from their parent rocks. Both the yellowish residual soils as well as the unweathered and weathered parent rocks were obtained from Jangdong-ri, Donggang-myun, Naju, Jeollanam-do, Korea. The soil samples were examined to analyze the said soil's physicochemical properties such as color, pH, and particle size distribution. A scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were performed in order to understand the mineralogy, chemical composition, and morphology of the soils. Two thin sections of a parent rock were analyzed to study its mineral composition. A particle size analysis of the soils indicates that the residual soil consists of mainly silt and clay (approximately 95%) and that soil textures are silty clay or silt clay loam. The soil colors of the residual soil are dark brown (7.5YR 3/4) through yellowish red (5YR 4/6). The pH of the residual soil ranges from 4.3 to 5.1. The major minerals of the parent rocks were quartz, biotite, chlorite, and plagioclase. The mineralogy of the sand fraction of the residual soil was quartz, biotite, muscovite and sanidine. The mineralogy of the silt fraction of the residual soil was quartz, biotite, muscovite, Na-feldspar, K-feldspar, and sanidine. The clay mineralogy of the soil was goethite, kaolinite, ilite, hydroxy-interlayed vermiculite(HIV), vermiculite, mica, K-feldspar and quartz. The mineral composition of the residual soil and the parent rock indicates that feldspar and mica in the parent rock weathered into illite, vermiculite and hydroxy-interlayed vermiculite(HIV), and finally changed into kaolinite and halloysite in the yellowish residual soils.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체배리어방전 플라즈마를 이용한 형광체 분말 코팅)

  • Jang, Doo Il;Ihm, Tae Heon;Trinh, Quang Hung;Jo, Jin Oh;Mok, Young Sun;Lee, Sang Baek;Ramos, Henry J.
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.455-462
    • /
    • 2014
  • This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.

EFFECT OF 10% CARBAMIDE PEROXIDE ON DENTIN (상아질에 대한 10% Carbamide peroxide가 미치는 영향)

  • Seo, Sang-Woo;Kown, Yong-Hoon;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Kyo-Han;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2003
  • The teeth bleaching with bleaching agent is widely used at recent times. Until yet the exact mechanism of the bleaching agent isn't known but it is thought that is by the complex reduction-oxidation reaction of the decomposed free radical from bleaching agent through various ways. In other words, it is supposed that the teeth are whitened by agent's changing chemical structures of stain-causing materials. The purpose of this study is to exam the change of the dentinal character by bleaching agent and to evaluate the safety of this agent. For this study, after applying 10% carbamide peroxide to enamel of human premolar for 6 hours a day for 2 weeks we examined changes of surface morphology, microhardness, composition and contents of minirals in human dentin using SEM, microhardness tester, FT-Raman spectrometer and EPMA and got following results. There was no significant difference in surface morphologic change when we examined the effect of 10% carbamide peroxide which penetrated into dentin after applied on enamel surface comparing with result from specimen in distilled water No change was shown on the surface of peritubular and intertubular dentin within the nanometeric range. The microhardness between bleached teeth and teeth stored in distilled water showed no statistically significant difference FT-Raman spectra of dentin exhibited no change of the component in human dentin. Only the least change in peaks of organic and inorganic materials were detected in Raman intencity. The total content of mineral elements in dentin with no treatment, stored only in distilled water and stored in distilled water after bleaching were $98.73{\pm}1.89,\;98.56{\pm}2.11\;and\;97.47{\pm}2.51$ respectively. Also they showed no statistically significant difference. From above results, the effect of 10% carbamide peroxide bleaching on structure of dentin is very low and the results may confirm the safety of this bleaching agent.

  • PDF

Effect of Foliar Application of Boron on Growth and Yield in Sesame (붕소 엽면시비가 참깨가 생육 및 수량에 미치는 영향)

  • 정병관;김동관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.441-449
    • /
    • 1996
  • This study was conducted to find the changes of growth, seed yield and several characteristics of sesame by leaf spray of boron as a solution which is likely to be lack in the soil. It is carried out at low land developed 5 years ago. The amount of 200l /l0a boron as boric acid is sprayed in each treatment at the 11 node stage of sesame in main stem. The spraying concentrations of boric acid are 0.0, 0.2 and 0.4% in each treatment of the level low plot and the ridge height 15cm plot. The result shows that leaf area is increased in proportion to the concentration of boric acid in each treatment of the level low and the ridge height 15cm, and the degree of increase of each node order is remarkable in lower leaves and is more remarkable in the treatment of level low plot. The effects of leaf spray of boric acid are not only the increase of leaf area but also dry weight, no. of capsule per plant, 1,000 grains weight of capsule setting under middle position. As a result, the amount of seed is increased in 53% in the treatment of level low. The change of major characteristics according to leaf spray of boric acid is generally great in the treatment of level low. Especially the increase of leaf area in the part of upper leaves and low leaves is effective to improve other characteristics.

  • PDF

Effect of Bacillus Strains on the Chungkook-jang Processing (1) Changes of the Components and Enzyme Activities During Chungkookjang-koji Preparation (균주(菌株)를 달리한 청국장의 제조(製造)에 관(關)한 연구(硏究) 제1보(第1報)-청국장메주 발효과정중(醱酵過程中)의 성분(成分)과 효소력(酵素力)-)

  • Lee, Hyun-Ja;Suh, Jung-Sook
    • Journal of Nutrition and Health
    • /
    • v.14 no.2
    • /
    • pp.97-104
    • /
    • 1981
  • In order to study the changes of components and enzyme activities during Chungkookjang-Koji preparation, the Kojies were prepared with Bacillus Natto, Bacillus subtilis and traditional method. The temperature of Koji materials during Koji preparation was very different according to the experimental group. The content of ethyl alcohol, reducing sugar, amino nitrogen and water soluble nitrogen were changed by the Koji preparing stage and experimental group. Amylase and protease activities showed on irregular change on standing and their activities were not remarkably different among the groups and appeared weakly.

  • PDF

Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts (메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사)

  • Seo, Ho Joon;Fan, Shijian;Kim, Yong Sung;Jung, Do Sung;Kang, Ung Il;Cho, Yeong Bok;Kim, Sang Chai;Kwon, Oh-Yun;Sunwoo, Chang Shin;Yu, Eui Yeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.581-584
    • /
    • 2008
  • The catalyst carriers of the mesoporous layer compounds were prepared to carry out the partial oxidation of methane(POM) to hydrogen. The catalytic activities of POM to hydrogen were investigated over Ru(3)/SPK and Ru(3)/SPM catalyst in a fixed bed flow reactor under atmosphere. In addition, the catalysts and carriers were characterized by BET, TEM, TPR. The BET surface areas of the silica-pillared $H^+-kenyaite$(SPK) and the silica-pillared $H^+-magadite$(SPM) were $760m^2/g$ and $810m^2/g$, repectively, and the average pore sizes were 3.0 nm and 2.6 nm, repectively. The nitrogen adsorption isotherms were type IV with developed hysteresis. The TEM showed that the mesoporous layer compounds were formed well. The Ru(3)/SPK and the Ru(3)/SPM catalyst were obtained high hydrogen yields(90%, 87%), and were kept constant high hydrogen yields even about 60 hours at 973 K, $CH_4/O_2=2$, $1.25{\times}10^{-5}g-Cat.hr/ml$. The TPR peaks of Ru(3)/SPK and the Ru(3)/SPM catalyst showed the similar reducibilities around 453 K and 413 K. It could be suggested that SPK and SPM had the physicochemical properties as oxidation catalyst carries from these analysis data.

Submicroscopy of Forest Soils (kandiustults) Derived from Granite in Southern Part of Korea (우리나라 남부지역(南部地域) 화강암질(花崗巖質) 삼림토양(森林土壤)의 SEM과 TEM에 의한 관찰(觀察))

  • Cho, Hi Doo;An, Ki Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.5
    • /
    • pp.608-618
    • /
    • 2001
  • To understand the weathering processes of the soil by submicroscopic method is very important to realize the properties of the soils. In this study soil formation processes show every steps to the changes in chemical and mechanical properties and the submicroscopic characteristics of soil weathering on the profiles of forest soils derived from granite in southern part of Korea. Fecal pellets(SEM) are given a full detail of the positive activities of the forest soil animals; mainly invertebrates in the O horizon and the E horizon. External shapes of fecal pellets have been divided into five groups : spherical, ellipsoidal, cylindrical, platy and threadlike. But doughnutlike form of fecal pellets is observed in this study. The soluble and suspended materials in the soils move downwards by percolation from the A horizon to the B or the BC horizons, and result in the illuviation cutans(SEM) on the ped surface of the lower horizon and deposited stack of kaolinite. Illuviated cutans are deposited on the ped surface even in the depth of 312cm in the BC horizon as well as the Bt horizon and comprise of fine silt, coarse clay and fine clay. A lot of halloysites are observed on the cutan surface. Halloysite formation from feldspars has been well known but a lot of hallyosite formation are observed in this study. The formation were predicted by Jackson(1962), inferred by Wada and Kakuto(1983a, b) and proved evidently by Cho and Mermut(1992a, b). This also suggests that halloysites in the soils derived from granite are formed a lot from ferruginous chlorites. The release of Fe from the chlorite structure are significant pedogenic processes and newly formed Fe oxides imparted a red color to the soils. The iron oxides particles, which are ejected and recrystalized, aggregate thickly on the edge of the ferruginous chlorites, and this indicates the release of structural Fe from weathered chlorites. Hematites and goethites are frequent in the fine clay in this soils.

  • PDF