• Title/Summary/Keyword: 표면 플라즈몬 폴라리톤

Search Result 3, Processing Time 0.017 seconds

Characteristics of Nanoscale Modes Guided by the Total External Reflection of Surface Plasmon-Polaritons (표면 플라즈몬-폴라리톤의 외부-전반사에 의해 도파되는 나노 크기 모드의 특성)

  • Seol, Kang Hee;Song, Seok Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Total external reflection (TER), which does not occur on a dielectric interface, is a unique feature of surface plasmon-polaritons (SPP). We propose an SPP-TER waveguide structure consisting of low-index dielectric nanocore covered with high-index dielectric on a flat metal surface. The SPP mode confined in the nanocore by the TER effect has a mode size much smaller than wavelength scale. Numerical comparison of mode characteristics between the SPP-TER waveguides and other total-internal-reflection-based waveguides such as metal or high-index dielectric nanowires show that the SPP-TER structures can possess higher modal gain for applications of nanocavity lasers.

Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires (은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석)

  • Ha, Jeonghong;Kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

High-Performance Plasmon Bio-Sensor with Grating Profile based on Metallic Layer (금속층에 기반한 격자구조형 고성능 플라즈마 바이오센서)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.145-150
    • /
    • 2022
  • An analytical model based on a modal transmission-line theory (MTLT) is developed to investigate the optical transmission through metal gratings. This model gives well physical meanings for the transmission as well as for the dispersion relations of the modes responsible for high transmission. These concepts provide accurate information even for real metals used in the visible~near-infrared wavelength range, where surface plasmon polaritons (SPP's) are excited. Furthermore, the dispersion relations allow the nature of the propagation modes to be assessed. The propagation modes are hybrid between Fabry-Pérot like modes and SPP's. It is important to consider different period and aspect ratio of metal gratings in order to determine the nature of the hybrid modes. In this paper, the sensing characteristics and mode propagation phenomena of high-performance plasma bio-sensors that depend on these variables were clearly analyzed.