• Title/Summary/Keyword: 표면 장력

Search Result 487, Processing Time 0.026 seconds

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

Synergistic Surface Activities and Phase Behavior in Mixtures of a Diglyceryl Cationic Surfactant and a Conventional Anionic Surfactant (디글리세릴계 양이온계면활성제와 일반 음이온계면활성제 혼합물에서의 계면활성 상승효과와 상거동)

  • Choi, Jeong-Jin;Cho, Wan-Goo;Rang, Moon-Jeong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.799-805
    • /
    • 2008
  • In general, anionic and cationic surfactants are incompatible because their mixtures form insoluble complexes and precipitate in the water. There are, however, some equimolar complexes of anionic and cationic surfactant that are soluble and behave like regular surfactants, specifically like nonionic surfactants, thus named pseudo-nonionic surfactant complexes. Pseudo-nonionic complexes are more effective and efficient in surface activities than their ionic surfactant components as shown by their equilibrium and dynamic surface tensions. They pack at the interface more than their ionic components. When a novel cationic surfactant, diglyceryl dodecyl dimethyl ammonium chloride(DGDAC), having the polyhydroxyl group at the hydrophilic head group, was mixed with a conventional anionic surfactant (sodium dodecyl sulfate; SDS) at equimolar ratio, we found that the aqueous equimolar mixture showed strong positive synergism in which molecular interaction parameter ${\beta}^M$ was very low, -17.2. According to the studies of equilibrium phase behavior and microscopy, this mixed system could form homogenous solutions containing vesicles.

A Study on the Atomizing Mechanism for the Swirl Nozzle (와권(渦卷) 노즐의 무화기구(霧化機構)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Sakai, Jun;Ishihara, Akira
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.81-97
    • /
    • 1987
  • Two nozzles with different size (Figure 2) were particularly designed to supply air through the swirl core into the central part of the liquid stream in the same parallel direction to produce a well-mixed air and water in the whirl chamber as spray liquid in bubble formation. Atomization was attempted to improve by using both the preliminary break-up process with less viscosity and less surface tension in the whirl chamber and the effects of increased frequency of the band of drops with the raised ambient air density in front of the nozzle orifice. The volumetric ratio between spray liquid and air on four levels was used to investigate the effects of air as a component of the mixture on atomization. The results of the experiment were summarized as follows; Droplet size became progressively finer as the operating pressure was increased in the range of $0.70kg/cm^2$ to $6.33kg/cm^2$, which was similar to the previous works. The new atomizing mechanism so-called 'air-center nozzle' gave a narrower range in droplet size distribution with smaller volumetric median diameter (VMD) than that of the existing spray system at a given pressure, which showed the possibility of improvement of atomization in a certain limit. The volumetric median diameter produced by the new atomizing mechanism was decreased from the central region toward the exterior edges across the spray pattern.

  • PDF

Experimental Investigation on the Droplet Entrainment in the Air-Water Horizontal Stratified Flow (물-공기 수평 성층류 유동조건에서 액적이탈 현상에 대한 실험연구)

  • Bae, Byeong Geon;Yun, Byong Jo;Kim, Kyoung Doo;Bae, Byoung Uhn
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • In the high convective gas flow condition, irregular shaped water waves from which droplet entrainment occurs are generated under horizontally stratified two-phase flow condition. KAERI proposed a new mechanistic droplet entrainment model based on the momentum balance equation consisting of the shear stress, surface tension, and gravity forces. However, this model requires correlation or experimental data of several physical parameters related to the wave characteristics. In the present study, we tried to measure the physical parameters such as wave slope, wave hypotenuse length, wave velocity, wave frequency, and wavelength experimentally. For this, an experiment was conducted in the horizontal rectangular channel of which width, height, and length are, respectively, 40 mm, 50 mm, and 4.2 m. In the present test, the working fluids are chosen as air and water. The PIV technique was applied not only to obtain images for phase interface waves but also to measure the velocity field of the water flow. Additionally, we developed the parallel wire conductance probe for the confirmation of wave height from PIV image. Finally, we measured the physical parameters to be used in the validation of new droplet entrainment model.

Changes in Physicochemical Properties and Bioactivity of Pesticide Spray Solutions (농약살포액의 이화학적 특성과 생물활성 변화)

  • Jin, Yong-Duk;Lee, Sang-Bum;Lee, Sang-Guei;Oh, Byung-Youl
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.411-421
    • /
    • 2005
  • This study was carried out to establish rational methodologies for the use of pesticide formulations to be sprayed after water-dilution. Hardness and electric conductivity of six major river water and ground water sampled from 52 sites in major rice-growing areas across the country ranged from 5 to 324 ppm(av. 90 ppm) and from 0.038 to 1.078 dS/m(av. 0.265 dS/m), respectively, which are acceptable for diluent water of pesticides. The pH changes in pesticide spray solutions with time after preparation mainly depended on the pH of the water used for pesticide dilution. The surface tensions of pesticide spray solutions reduced slightly with time after preparation, irrespective of kinds of pesticide formulations. Suspensibility of WPs became worse with an increase in the hardness and salt concentrations of diluent water, even though the degree was negligible. Emulsion stability of ECs became worse with an increase in hardness and salt concentrations of diluent water. Degradation rates of the active ingredients of pesticide spray solutions 3 days after preparation were less than 5%, regardless of mixing or non-mixing of two or more pesticides. Consequently, the spray solutions of most pesticides were usable until two to three days after preparation unless physical properties deteriorated. The tank-mixing order of EC and WP formulations did not make any differences in all the physical properties of pesticide spray solutions. However, the proper order for the tank-mixing of compatible pesticides was WP, WG, SC, EC, and SL, because the order is easy to prepare the pesticide spray solutions. The efficacy of pesticide spray solutions on the respective target pathogens and insect pests of rice plants three days after preparation was recorded over 95% of that of 0 day, which was almost the same as that of the solutions applied punctually after preparation.

Characterization of Oil-Degradation Biosurfactant Produced by Bacillus sp. TBM40-3 (Bacillus sp. TBM40-3에 의해 생성된 Biosurfactant의 유류분해 특성)

  • Kim, Sun-Hee;Lee, Sang-Cheol;Yoo, Ju-Soon;Joo, Woo-Hong;Chung, Soo-Yeol;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.170-175
    • /
    • 2004
  • In this paper we studied about Bacillus sp. TBM40-3 producing biosurfactants. The strains were isolated from Taeback Mountain soil and identified as Bacillus sp. by l6S rDNA nucleotides sequence analysis. The TBM40-3 was gram-positive and rod-shaped as observed by field emission scanning microscopy. After the cultivation TBM40-3 in LB broth for 90 h and the surface tension of supernatant was decreased to 29 mN/m. Emulsification activity and stability of crude biosurfactant was measured by using water-immiscible hydrocarbons and oil as substrate. Maximum emulsification activity and stability was obtained from soybean oil. Also, we confirmed that the TBM40-3 producing biosurfactant had an effect on crude oil while showing a superior effect as compared to chemically synthesized surfactants (SDS, Span85, Tween40, Triton X-100). As a result, the Bacillus sp. TBM40-3 producing biosurfactant had potent properties as an emulsifying agent and an emulsion stabilizing agent.

Seasonal Characteristics of Pore Development and Hydraulic Properties of Surface Soil in Two Forested Watershed (두 산림유역의 표층 토양의 공극 발달과 수리학적 성질의 계절적 특성)

  • Joo, Sung-Hyo;Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.151-161
    • /
    • 2009
  • Configuration of soil hydraulic property is an essential component to understand the hydrological processes at the hillslope scale. In this study, we investigated temporal variations in pore development and soil hydraulic properties during the period from March to October in 2008. Characteristics for macropore flow and hydraulic conductivity were measured at two hillslopes: one is the hillslope located at the Buprunsa in Sulmachun watershed, and the other is the hillslope located in Gwangneung Research Forest. Vertical fluxes through macropore were measured using a tension infiltrometer at the depth of surface. The saturated hydraulic conductivities in March, June, July and September were relatively high compared to those in May and October. Temporal variations in several soil hydraulic features could be explained by the differences in vegetation activity and soil moisture content determined by antecedent precipitation. Particularly, the features of macropores had a substantial impact on hydraulic conductivity in the forest hillslope. The temporal nonuniformity of the soil hydraulic properties observed in this study manifests the dynamic features of hydrological processes in the hillslope scale and the experimental results will be useful to understand the internal hydrological processes in the mountainous hillslope.

Fundamentals of Tight fitted Contact Lens Movement (Tight Fit 콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.3
    • /
    • pp.17-27
    • /
    • 2009
  • Purpose: This review article was written to determine the effects of parameters characterizing a hard contact lens (RGP included), such as BCs, diameters, edge angles, on the time interval for tight fitted lens to return to the equilibrium when it was decentered from blinking. Methods: A mathematical formulation was established to relate or calculate the restoring forces and thickness of lacrimal layer beneath the cornea with the various lens parameters when the tight fitted lens was decentered from blinking. Based on this formulation the differential equations and their numerical solution program were set up to describe the time dependence of the lens on the position and to estimate the time for the lens's return to the equilibrium after blink. Results: It is found that the time interval for the tight fitted lens to return to the equilibrium decreases as either the BC decreases or the diameter increases because both the reduction in BC and increase in diameter result in the increase in the lacrimal layer thickness between the lens and cornea increase which yielded the lowering of the viscous friction in the lens motion. As the edge angle of tight fitted lens increases the time for recentering decreases due to the increase in restoring force without change in lacrimal thickness beneath the lens. In the case of flat fitted hard lens (RGP included), the lacrimal layer thickness under the lens increases as either BC or diameter increases which results in reduction in viscous friction so that the time for the lens's return to the equilibrium were to decrease. The edge angle of flat fitted lens does not affect the lens motion. Conclusions: The effect of BCs on the lens motion (time to approach the equilibrium) was concluded to be significant with both tight and flat fitted lens where its results are contrary with each other. The edge angle of lens only affects the motion in tight fitted lenses.

  • PDF

Adaptive Regulators for Quality Assurance in Resistance Welding (MFDC 저항용접의 적응제어 및 SPC 기능 고찰)

  • Lee, Yong-Ki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.119-119
    • /
    • 2009
  • 인버터 DC 저항용접의 적용성 증대 : 인버터 DC 저항용접 공법이 SPOT, PROJECTON, SEAM, BUTT 등의 공정에 다양하게 적용되어 저항용접 현장에서 고효율, 친환경적 용접 환경을 만드는데 일조 하고 있다. 특히 자동차의 경량화, 충돌내성 증대, 진동 및 내구성 증대, 공간활용 극대화, 새로운 Design 개념 적용 등의 산업전반에 걸쳐 나타나는 신 Trends로 고 장력 철재의 적용 범위가 확대되고 HSS(High Strength Steel), EHSS(Extra High Strength Steel), UHSS (Ultra High strength Steel ; Hot - Formed Steel )등 다양한 철판의 SPOT 저항용접이 필요하게 되었다. 기존의 AC 단상용접의 전력 특성 상 통전 중 무 통전 시간 과 높은 PEAK 전력, 단상 대 전력 소모로 인한 전력 DROP 등의 문제로 인하여 신소재의 용접 시 매우 많은 Spatter가 발생하고, 높은 용접품질의 확보가 어려워 지므로 이를 대체하기 위한 공법으로 MFDC ( 인버터 DC 저항용접공법 )이 적용되고 있다. 인버터 DC 저항용접의 적응제어 : MFDC라는 높은 효율의 용접 전력원이 확보 됨에도 불구하고 용접현장에서는 원 자재, 도금 등의 품질 산포, 프레스 물의 가공산포, 공기압 산포, 전극 과열 및 마모 등의 요인에 의하여 저항용접 산포가 발생하고 있다. 이는 인위적인 조작이 어렵고 불규칙적이며, 어디서나 산재하고 있는 문제이다. 이를 용접전력 제어 법으로 개선하여 일정한 용접성을 확보하기 위한 노력이 적응제어 기법이다. 정 전류, 정 전력 제어는 정량 제어로 용접 물을 비롯한 용접부의 변화와는 관계없이 설정된 일정량의 전력을 공급하기만 하는데 반하여 적응제어는 적절한 용접 작업 시의 용접 물의 상태, 전극의 가압, 표면 상태 등에 따른 변화 페턴을 기억하고 이후 진행되는 용접에 대하여 정상 페턴과의 차이를 감지 이를 보상하므로 고품질의 용접성을 보장하는 제어기법이다. 따라서 다양한 용접 산포 유발 요인에 의해 용접부의 변화가 발생한다 하여도 그 변화를 감지 하고 적절한 용접전력을 공급한다면 고품질의 용접성을 확보하는데 유용한 공법이 될 수 있다. 인버터 DC 저항용접의 SPC 관리 : SPOT 용접 시 획득할 수 있는 다양한 파라메터에 대하여 모니터링 하고 이 자료를 data 화 하여 품질 관리에 응용하게 되면 양산라인에서 반복적으로 발생되는 문제점을 확인 할 수 있고 이를 통계적 방법으로 추적 개선해 나간다면 용접 불량 감소 및 생산성 향상에 도움이 되며 작업자의 공정 능력 향상 및 기업의 기술축적에도 높은 기여를 할 수 있을 것이다. 용접 적응제어와 다양한 파라메터 모니터링이 한 system에서 이루어 질 때 높은 용접성 확보와 불량률 감소, 원가절감, 생산성 향상 등의 효과가 극대화 될 것이다.

  • PDF

Preparation and Properties of Water-based Adhesive Using Gemini Type Nonionic Reactive Surfactants (제미니형 비이온 반응성 계면활성제를 이용한 수성접착제의 제조 및 특성)

  • Shin, Hye-Lin;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2019
  • In order to improve the adhesion of water-based adhesive, gemini type nonionic reactive surfactants were synthesized and applied to water-based adhesives. The surfactants were synthesized by using maleic acid and polyoxyethylene cetyl ether having different length of ethylene oxide and confirmed by FT-IR and $^1H-NMR$. Their appearance was light yellow wax. The cloud point of the compound was more than $78^{\circ}C$. The measured critical micelle concentration (c.m.c) was $1.0{\times}10^{-4}{\sim}7.0{\times}10^{-4}mol/L$ and surface tension at c.m.c was 25.9~32.0 mN/m. As the number of ethylene oxide increased, the emulsifying power was improved. The foaming height of each compound by Ross-Miles method was 1.4~4.5 cm. The synthesized surfactants was then used as an emulsifier in emulsion polymerization of water-based adhesives and its physical properties were evaluated. The solid contents of prepared adhesives was 59%. The average particle size and initial tackiness of the prepared adhesives were 164~297 nm and ball no. of 20~32, respectively. The peel strength was $1.8{\sim}2.1kg_f/mm$. The retention rate of adhesives viscosity was evaluated to 99% during 30 days. Therefore, synthesized gemini type nonionic reactive surfactants are expected to be applied as an emulsifier for the high adhesive force.