유체 동역학에서, 난류에 의해 수중 구조물에 가해지는 압력과 전단력의 측정은 중요한 문제이 다. 이러한 유체의 흐름에 의한 압력과 전단력, 나아가 유체의 흐름방향까지 시간과 거리의 함수로 측정 할 수 있는 새로운 탄성표면파 센서가 개발되었다. 센서는 압축 인장형 전단력을 받는 두 개의 표면파 와 흐르는 유체 속의 표면파의 속도차는 또한 유체흐름에 의해 가해지는 압력에 비례한다. 정지류 속의 표면파와 흐르는 유체 속의 표면파의 속도차는 또한 유체흐름에 의해 가해지는 압력에 비례한다. 이 센 서를 응력 로젯과 같이 배열하면 유체의 진행방향도 함께 측정할 수 있다. 표면파 센서는 넓은 주파수 대역에 걸쳐 사용이 가능하므로, 적절히 설계하면 유체의 흐름에 의한 표면력과 유체의 진행방향을 동 시에 거리와 시간의 함수로서 국부적으로, 광역적으로 측정할 수 있다.
본 논문은 고속압력감응페인트기법(Fast-Responding PSP)을 소개하고, 이를 이용하여 정지비행상태에 있는 축소형 로터 블레이드의 표면(윗면) 압력을 측정해봄으로서 PSP를 이용한 로터 블레이드 표면 압력 측정의 정확성과 그에 따른 실험기법의 타당성을 검증하기 위하여 수행되었다. 실험을 위한 광원으로는 532 nm 파장을 가지는 Pulsed laser를 사용하였고, PSP 측정 기법으로는 Lifetime 기법을 적용하였다. 또한, 모델 표면에 도포된 압력감응페인트는 반응성이 높은 Porous PSP가 사용되었다. 로터 블레이드는 NACA0012 익형을 가지고 있으며 길이 340 mm, 코드 40 mm의 직사각 형상 1종과 끝단의 후퇴각이 다른 4종의 형상을 사용하였다. 로터 블레이드의 콜렉티브 피치각 변화에 따른 표면 압력 분포를 측정하였으며 측정된 결과를 통해 콜렉티브 피치각이 증가할수록 윗면의 압력이 낮아지는 것을 정성적으로 확인하였고, 정량적인 압력계수는 NASA의 실험 데이터와 비교하여 약 0.4~0.7 정도 높은 경향성을 보였다.
연꽃잎 효과(Lotus effect)라 불리는 자가 세정 효과(self cleaning effect)는 연꽃이 항상 깨끗한 상태를 유지하는 것이 관찰되면서 꾸준히 관심에 대상이 되어 왔었다. 자가 세정 효과는 접촉각 $150^{\circ}$ 이상의 초소수성 표면에서 구현이 가능하며 이런 표면을 일상생활부터 산업분야까지 응용하고자 하는 많은 노력들이 있었다. 물질의 친수성 또는 소수성은 표면의 거칠기(roughness)와 표면에너지(surface energy)의 두 가지 특성에 의해 결정된다. 하지만 낮은 표면에너지 물질을 사용해도 접촉각 $150^{\circ}$ 이상의 초소수성 표면을 얻긴 힘들며, 표면의 거칠기를 증가시켜야 한다. PTFE (polytetrafluoroethylene)는 낮은 표면에너지를 가진 소수성 물질로 bulk일 경우 접촉각이 약 $108^{\circ}$이지만 거친 표면을 가진 박막으로 만들 경우 접촉각이 $150^{\circ}$ 이상의 값을 가지는 초수수성 표면이 가능한 물질이다. 특히, 초소수성 표면 이외에 우수한 내열성 및 내화학성 특성을 가지고 있어 디스플레이 및 태양전지 등의 자가세정(self cleaning) 보호막으로써 응용이 기대되고 있다. 본 연구에서는 HFPO (hexafluoropropylene)를 원료 가스로 이용하여, Si(100)과 유리 기판위에 Cat-CVD (Catalytic Chemical Vapor Deposition)법으로 PTFE 박막을 증착하였다. 텅스텐(W)을 촉매로 사용하였으며, 촉매온도가 $850^{\circ}C$이상인 조건에서 접촉각이 $150^{\circ}$ 이상인 초소수성 PTFE 표면을 쉽게 얻을 수 있었다. 특히 본 연구에서는 제막압력을 300 mTorr에서 700 mTorr까지 변화시켜 가며 유리와 Si 기판위에 증착하였다. Cat-CVD 제막압력을 변화시켜가며 증착된 PTFE 박막의 접촉각을 측정한 결과, 제막압력이 300 mTorr일 때 glass와 Si 기판위에 증착된 PTFE박막 표면에서의 접촉각은 각각 133, $117^{\circ}$였지만, 제막압력이 400 mTorr이상일 땐 $150^{\circ}$ 이상의 높은 접촉각을 갖는 초소수성 표면을 얻을 수 있었다.
압력 $10^{-9}$ Torr 이하의 초고진공(ultrahigh vacuum) 영역에서의 압력 측정에는 수 mA의 열전자로 잔류 가스를 이온화시켜 그 이온 전류를 측정하는 이온게이지를 주로 사용한다. 압력이 $10^{-12}$ Torr영역 이하인 극고진공(extreme high vacuum: XHV) 영역에 진입하면, ESD (electron stimulated desorption) 효과 등에 의한 이온 게이지 자체의 가스방출률이 커져 정확한 압력 측정이 곤란해 진다. 극고진공 영역에서 이온 게이지는 수 와트(W) 이상의 전력을 사용하여 수 mA의 열전자를 방출시키나, 신호인 이온 전류의 양은 1pA 이하이기 때문에 열전자에 의해 발생되는 백그라운드 전류에 묻혀 신호 전류가 측정되지 않는다고 할 수 있다. 100 nm 이하의 곡률을 가진 뾰족한 금속 탐침에 강한 전기장을 걸어주면 고체 내부의 전자가 터널링 효과에 의해 진공 중으로 방출되며, 이를 전계방출(Field Electron Emission) 효과라 부른다. 전계 방출 전류량은 탐침 표면의 일함수에 의존하며, 일함수가 클수록 지수함수 적으로 감소한다. 금속 표면에 진공 중의 잔류 가스가 부착하면 일함수가 증가한다. 가열에 의해 전계방출 탐침의 표면을 세정한 후에 전자 빔을 방출 시키면, 표면에 가스 분자가 흡착하여 방출 전류량은 점점 감소한다. 감소 속도는 압력에 비례하며, W(310) 탐침의 경우 $10^{-10}$ Torr 영역에서는 수분만에 최초 전류값의 1% 이하로 감소한다. 전계방출 전류의 감소속도가 압력에 비례하는 현상을 이용하여 압력을 측정하였다. Extractor Ionization Gauge 측정값 $5{\times}10^{-12}-3{\times}10^{-10}$ Torr의 범위에서 (111) 방향으로 정렬된 텅스텐 단결정 탐침을 사용하여 방출전류의 로그값을 시간의 함수로 semilog그래프를 그리면, 그래프는 직선을 그리며 그 기울기가 압력에 비례함을 알 수 있었다. 기울기 값과 게이지 측정값은 $10^{-11}{\sim}10^{-10}$ Torr 영역에서 거의 완벽한 비례관계를 보여주었으나, $10^{-12}$ Torr 영역에서 게이지 측정값은 기울기 값에서 추출한 압력치보다 높은 값을 보여주었으며, 이는 게이지 백그라운드 전류에 의한 차이라고 생각된다. W (310) 탐침의 방출전류는 그 감소속도가 W (111) 탐침과 마찬가지로 압력에 비례하였으나, 전류-시간 그래프는 가열 세정 직후에 전류가 거의 감소하지 않는 $2{\times}10^{-10}$ Torr에서 약 10분간 지속되는 '안정 영역'이 존재함을 보여주었다. '안정 영역'은 $10^{-11}$ Torr 영역에서는 수십분, $10^{-12}$ Torr 영역에서는 수시간 이상으로 증가하였다. 초-극고진공 영역에서의 잔류가스 주성분인 수소에서 물, 일산화탄소등의 가스로 바뀌면 '안정 영역'은 사라졌고, 이는 '안정 영역'이 수소 흡착에 의해서만 나타나는 고유 현상임을 말해준다.
고속으로 주행하는 열차의 주변 유동에 의해 발생하는 공력소음은 실외소음과 실내소음에 모두 영향을 미친다. 본 연구는 열차표면의 압력섭동데이터를 통해 공력소음을 측정하고 실내소음에 영향을 미치는 성분을 정량적으로 평가하기 위한 시험법을 개발하고 분석하는 것이다. 실내소음을 정확히 평가하기 위해서는 취득한 표면 압력섭동 데이터에서 혼재되어 있는 압축성 압력섭동과 비압축성 압력섭동을 각각 분리하여 평가하는 것이 중요하다. 이는 두 압력섭동의 소음 전달 특성이 다르기 때문이다. 먼저 마이크로폰의 설치 길이와 간격을 결정하여 표면 압력섭동 데이터를 취득하였고, 파수-주파수 분석을 수행하여 비압축성 압력섭동과 압축성 압력섭동을 분리하여 음압 스펙트럼을 취득하였다. 마지막으로 전두부와 후두부에서 측정한 시험 결과값을 비교한 결과 전두부 표면 압력섭동이 후두부 압력섭동보다 더 큼을 확인하였다.
표면연소버너의 모재 중 최근 많은 관심을 끌고 있는 금속섬유를 이용한 LPG 및 COG의 연소특성을 파악하였다. 연소모드, 매트 표면온도분포, 공해물질 배출량, 버너 전후단 압력 손실을 측정한 결과, COG 연소시가 더 넓은 범위의 적열영역을 얻을 수 있었고, 매트의 평균 표면온도도 높았다. NOx 발생량은 100ppm 이하였고, 연소부하 50kcal/$ extrm{cm}^2$hr에서의 매트 전후단의 압력손실은 30mmH2O로 압력손실은 거의 없었다. 적열범위나 표면온도분포 등이 가스별로 약간의 차이를 보였으나, 매트의 종류에 크게 상관없이 안정연소를 달성할 수 있어 가스 특성이 상이한 각종 가스의 연소에 표면연소기술의 적용이 가능할 것이다.
본 연구에서는 WES의 표준 월류형 여수로에 대한 동수역학적인 흐름거동을 FLOW-3D 모형을 이용하여 해석하였다. 월류수두에 따른 월류유량, 월류흐름의 수면곡선, 여수로 표면에서의 압력분포와 같은 모의결과는 WES의 실험자료와 잘 일치하였다. 그리고 월류수두가 여수로 설계수두의 1.33배인 경우의 유속과 압력의 연직분포를 검토하였다. 검토결과, 웨어마루를 통과하면서 저층의 유속이 먼저 가속되며 점차 하류로 이동하면서 수표면의 유속이 가속되어 거의 균일한 유속분포를 보였으며, 압력의 연직분포는 웨어마루 상류에서는 수표면에서 내기압을 보이고 점차 수심이 길어짐에 따라 정수압분포와 유사한 분포를 보이나, 여수로 표면에 접근함에 따라 급격하게 압력이 감소하면서 부압이 발생하였다. 웨어마루 하류에서는 여수로 표면에서의 압력이 점차 대기압으로 접근함에 따라, 거의 전 수심에 걸쳐 대기압과 유사한 분포를 보였다.
LEX를 가진 델타형 날개 모델을 사용한 풍동실험을 통하여 LEX가 델타형 날개 윗면의 표면압력분포에 미치는 영향에 대한 연구를 수행하였다. 풍동실험의 유속은 40m/sec, 전압과 전온도는 각각 101Pa, 278K이었으며, 단위길이당 레이놀즈 수는 $1.76{\times}10^6$이었다. LEX는 날개의 표면압력분포를 매우 많이 변화시키었다. LEX가 없는 경우에 비하여 표면압력의 피크치가 시위 앞부분에서는 감소하였으나 뒷부분으로 갈수록 그리고 받음각이 증가할수록 피크치도 증가하였다. 스팬방향 압력구배도 시위 앞부분에서는 완만하였으나 뒤로 갈수록 증가하였다. 또한 LEX가 있는 경우에는 모든 위치에서 받음각의 증가에 따라 표면압력 피크치도 거의 선형적으로 증가하였다.
이 논문은 반응성 $BCl_3$ 플라즈마로 GaAs의 건식 식각을 진행한 후 그 결과에 대하여 연구 분석 한 것이다. 이 때 사용한 식각 공정 변수는 $BCl_3$ 플라즈마에서의 가스유량, 공정 압력과 RIE 척 파워의 변화이다. 먼저 공정 압력을 75 mTorr 고정시킨 후 $BCl_3$ 유량을 변화 (2.5~10 sccm)해서 실험하였다. 또한 BCl3의 유량을 5 sccm으로 고정시킨 후 공정압력을 변화(47~180 mTorr)해서 식각 실험을 실시하였다. 마지막으로 47 mTorr와 100 mTorr 의 각각의 공정압력에서 RF 척 파워를 변화시켜 (50~200 W) 실험하였다. GaAs 플라즈마 식각이 끝난 후 표면단차 측정기 (Surface profiler)를 사용하여 표면의 단차와 거칠기를 분석하였다. 그 후 그 결과를 이용하여 식각율 (Etch rate), 식각 표면 거칠기 (RMS roughness), 식각 선택비 (Selectivity) 등의 식각 특성평가를 하였다. 또한 식각 공정 중에 샘플 척에 발생하는 자기 바이어스와 $BCl_3$ 플라즈마 가스를 광학 발광 분석기 (Optical Emission Spectroscopy)를 이용하여 플라즈마의 상태를 실시간으로 분석하였다. 이 실험 결과에 따르면 공정 압력의 증가는 샘플 척의 자기 바이어스의 값을 감소시켰다. $BCl_3$ 압력 변화에 의한 GaAs의 식각 결과를 정리하면 5 sccm의 $BCl_3$ 가스유량과 RF 척 파워를 100 W로 고정시켰을 때 식각율은 47 mTorr에서 가장 높았으며, 그 값은 $0.42{\mu}m/min$ 이었다. GaAs의 식각 속도는 공정압력이 증가할수록 감소하였으며 180 mTorr에서는 식각율이 $0.03{\mu}m/min$로 거의 식각되지 않았다. 또한 공정압력을 75 mTorr, RF 척 파워를 100 W로 고정시키고, $BCl_3$ 가스유량을 2.5 sccm에서 10 sccm까지 변화시켰을 때, 10 sccm 의 $BCl_3$ 가스유량에서 가장 높은 식각율인 $0.87{\mu}m/min$이 측정되었다. 압력에 따른 GaAs의 식각 후 표면 거칠기는 최대 2 nm 정도로 비교적 매끈하였으며, 거의 식각되지 않은 180mTorr의 조건에서는 약 1 nm로 낮아졌다. 본 실험 조건에서 GaAs의 감광제에 대한 식각 선택비는 최대 약 3:1 이내였다.
철강재는 대량 생산이 가능하며 경제성이 뛰어나고 기계적 성질도 우수하므로 다양한 산업 분야에서 널리 사용되고 있다. 그러나 철강재는 부식 환경에 취약하기 때문에 그 용도에 따라 다양한 내식성을 부여하는 표면처리를 적용하고 있다. 일반적으로 이러한 철강 재료에 대한 내식성 표면처리로는 습식공정을 이용한 아연(Zn)도금 표면처리가 널리 적용되고 있다. 그러나 최근에는 이러한 습식공정으로 인해 발생하는 자원소모 및 환경적인 문제와 더불어 고내식성 표면처리 소재에 대한 수요가 증가함에 따라 이러한 단점을 극복할 수 있는 새로운 소재 및 기술 개발에 대한 관심이 증대되고 있다. 이러한 관점에서 기존의 습식표면처리 공정을 건식으로 대체 또는 병행하고, 현행 아연소재를 대체할 수 있는 코팅소재로써 알루미늄(Al) 이나 마그네슘(Mg)으로 대체하는 방법이 시도되고 있다. 본 연구에서는 강판의 내식성을 향상시키기 위한 방법으로 기존의 습식 표면처리 공정에서 용이하지 않은 마그네슘을 이용하여 건식 PVD 프로세스에 의해 코팅막의 제작을 시도하였다. 그리고 코팅막 제작 조건 중에서 공정압력이 코팅막의 결정배향성에 미치는 영향과 내식성과의 상관관계를 규명하고자 하였다. 즉, 여기서는 강판 및 용융알루미늄 도금강판 상에 스퍼터링법에 의해 Ar 가스에 의한 공정압력을 2, 10 및 50 mTorr로 조절하면서 마그네슘 코팅막을 $2{\mu}m$ 두께로 각각 제작하였다. 이때 제작한 막의 표면 모폴로지 관찰(SEM) 및 결정구조 분석(XRD) 결과에 의하면, 강판 및 용융알루미늄도금강판 상에 제작한 코팅막들은 공통적으로 공정압력이 증가할수록 그모폴로지의 결정립의 크기가 작고 치밀한 구조로 변하였다. 또한 그때 형성된 코팅막의 결정구조는 표면에너지가 상대적으로 높은 Mg(002)면 피크의 점유율이 감소하고 표면에너지가 낮은 Mg(101)면 피크의 점유율이 증가하는 경향을 나타내었다. 그리고 공정압력이 증가할수록 Mg 격자 간 면 간격(d-value)이 증가하는 경향을 나타내었다. 이상에서 제작한 마그네슘 코팅막의 결정성장 과정은 본 진공 플라즈마 PVD 공정중 증착가 더불어 흡착역할을 하는 Ar의 움직임에 따라 설명 가능하였다[1,2]. 코팅막의 양극분극(Polarization)측정 결과에 의하면, 공정압력이 높은 조건에서 제작한 막일수록 부동태 특성이 우수하여 내식성이 향상되는 경향을 나타내었다. 특히, 공정압력이 상대적으로 높은 50 mTorr 조건에서 제작된 코팅막이 표면 마그네슘 결정의 크기가 조밀하고 결정구조는 Mg(002)면과 Mg(101)면의 상대강도 비가 유사하여 내식성 가장 우수하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.