Wide gap 반도체 중 하나인 GaN 에너지갭이 실온에서 3.4eV 이고 직접천이형 에너지대 구조를 가지므로 청색 및 자외영역의 파장을 발광하는 발광다이오드와 바도체 레이저 다이오드의 제작에유용한 재료이다. GaN계 III족 질화물반도체가 다파장용 광원으로서 유망함을 보인 것은 1970년대 초방의기초적 연구이다. 이로부터 약 25년이 경고한 현재 청색발광다이오드가 실용화당계에 이르게 되었지만 아직까지 전류주입에 의한 레이저발진은 보고되고있지 않다. 이 논문에서는 ALGaN/GaN이중이종접합(DH) 구조의 광여기에 의한 유도방출과 광학적 이득을 측정하므로서 전류주입에의한 레이저발진의 가능성을 조사하였다. 유기금속기상에피텍셜(MOVPE)법으로 성장한 ALGaN/GaN DH구조의 표면에 수직으로 펄스발진 질소레이저(파장:337.1nm, 주기:10Hz, 폭: 8nsec) 빔의 공출력밀도를 변화시키어 조사하고 시료의단면 혹은 표면으로부터 방출되는 광 스펙트럼을 측정하였다. 입상광밀도가 증가함에 따라 자연방출에 의한 발광피크보다 낮은 에너지에서 발광강도가 큰 유도방출에 의한 피크가 370nm의 파장에서 현저하게 나타났으며 실온에서 유동방출에 필요한 입사공밀도의 임계치는 약 89㎾/$\textrm{cm}^2$이었다. 이는 GaN 단독층에 대한 유동방출의 임계치 700㎾/$\textrm{cm}^2$ 에 비하여 약 1/8정도 낮은 것이며, 이를 전류밀도로 환산하면 약 27㎄/$\textrm{cm}^2$ 정도로서 전류주입에 의하여서도 레이저발진을 실현할 수 있는 현실적인 값이다. 한편 광여기 방법으로 측정한 광학적 이득은 입사광의 밀도가 각각 100㎾/$\textrm{cm}^2$과 200㎾/$\textrm{cm}^2$일 때 34$cm^{-1}$ / 과 160 $cm^{-1}$ / 이었다. 이와 같은 결과는 GaN의밴드단 부근의 파장영역에서 AIGaN 흔정의 굴절율이 GaN의 굴절율보다 작으므로 DH구조의 채택의 의한 광의 몰입이 가능하여 임계치가 저하된 것으로 여겨진다. 또한 광학적 이득의 존재는 이 구조에 의한 극단파장 반도체 레이저다이오드의 실현 가능성을 나타내는 것이다.
1.3 $\mu\textrm{m}$와 1.55 $\mu\textrm{m}$의 발광 파장을 갖는 광통신용 반도체 레이저 다이오드는 지금까지 많은 발전을 해 왔으며 다양하게 응용이 되어 오고 있다. 기존의 장파장 소자들은 InP 기판 위에 성장을 하고 있으며, GaAs 관련된 물질의 적용은 장파장 대역의 이득층 성장의 어려움 때문에 GaAs가 가지고 있는 안정된 장점에도 불구하고 적용되지 못했다. 그러나 1996년 M. Kondow는 GaAs 기판에 격자정합되는 InGaAsN 물질을 제안하였고(1) 그 이후로 레이저 다이오드에 제작에 까지 이르렀으며(2-3) 특히, 표면발광반도체레이저의 상온 연속발진에도 성공하였다. (중략)
광결정(photonic crystal)은 빛의 파장 크기 정도의 격자 상수를 지닌 1차원, 2차원, 또는 3차원의 주기적인 구조이다. 최근에 2차원 광결정 공진기 구조에서 광펌핑으로 레이저 발진이 성공한 결과가 발표되면서 광결정 구조를 이용한 광소자로의 응용이 본격적으로 시작되고 있다. 하지만, 2차원 광결정 발광 구조에서는 능동 매질이 공기 중과 접한 영역이 넓어서 필연적으로 면에서의 비발광 결합이 중요한 문제가 된다. 이러한 문제 때문에 반도체에 기반한 광결정 구조 중에서는 비발광 결합이 비교적 적은 InP/InGaAsP 계열 물질이 능동 매질로 이용되어 왔다. 본 연구에서는 광결정 발광 구조에서 표면 비발광 결합이 실제로 어느 정도나 영향을 미치는가에 대한 연구를 수행하였다. (중략)
반도체에서 소자의 크기를 작게 하고 집적도를 높임으로서 성능과 효율을 증가시키는 노력이 계속되듯이 광소자의 경우에도 고효율을 갖는 아주 작은 크기의 발광소자를 만들어서 광 정보처리에 이용하려는 노력이 진행중이다. 특히 마이크론 크기의 공진기와 이득물질간의 광결합 효율이 높으면 레이저 발진 문턱이 낮아진다는 원리를 이용한 마이크로 레이저 연구가 활발하다. 이러한 마이크로 레이저의 연구는 크게 두 가지 방향으로 진행된다. (중략)
최근 청색반도체레이저의 실현을 위하여 ZnSe가 대표하는 II-Ⅵ족 화합물반도체와 Gan가 대표하는 III족 질화물반도체분야에서 집중적인 연구가 이루어지고 있으며, 아직까지 실용화 되지 않고 있는 청색반도체레이저의 출현에 대하여 많은관심이 모아지고 있다. III족 질화물반도체는 InM(Eg:1.9eV)부터 AIN(Eg: 6.2eV)에 이르기까지 전 조성영역에서 완전한 고용체를 이루며, 실온에서 직접천이형 에너지 대구조를 가지므로 청색 혹은 자외영역에서 동작하는 발광소자를 제작하는데 있어 유망시 되고 있는 소재이다. 특히 GaN와 InN의 3원흔정인 GaInN를 활성층으로 이용하면 그 발전파장을 370nm부터 650nm까지 즉 가시 전 영역으로부터 근 자외영역을 포함할 수 있게 된다. 이 연구에서는 AIGaN/GaInN 이중이종접합(DH) 구조의 고아여기에 의한 유도방출고아의 편광 특성을 조사하였다. 유기금속기상에피텍셜(MOVPE)법으로 성장한 AIGaN/GaInN DH 구조의 표면에 수직으로 펄스 발진 질소레이저(파장: 337.1cm, 주기 10Hz, 폭: 8nsec) 빔을 조사하고 DH구조의 단면으로부터의 유도방출광을 편광기를 통과 시킨 후 스펙트럼을 측정하였다. 입사고아 밀도가 증가함에 따라 약 402nm의 파장에서 유도발출에 의한 가도가 큰 피크가 나타났고, 그 반치폭은 약 18meV이었다. 실온에서 AIGaN/GaInN DH 구조로 부터의 유도방출에 필요한 입사광밀도의 임계치는 약 130㎾/$\textrm{cm}^2$이었다. 한편 편광각이 90$^{\circ}$일때는 발광스펙트럼의 강도가 매우 낮고 단지 자연방출에 의한 스펙트럼만이 나타났다. 편광각이 0$^{\circ}$일 때 최대의 방출광 강도를 나타내었으며, 편광각이 -90$^{\circ}$로 회전함에 따라 발고아강도의 강도가 감소하였다. 이와 같은 결과는 광여기에 의하여 AIGaN/GaInN DH 로 부터의 유도방출광이 GaInN활성층의 단면에 평행한 전기장의방향으로, 즉 TE모드로 선형적으로 편광됨을 의미한다. AIGaN/GanN DH 로 부터의 유도방출이 선형적으로 TE모드로 편광되는 것은 이 구조를 이용한 청색 및 자외선 반도체 레이저다이오드의 실현에 매우 유익한 것이다.
Electrostatic Discharge (ESD) 펄스의 누적이 산화형 표면 발광 반도체 레이저 (oxide VCSEL)의 전기 및 광학적 특성의 열화에 미치는 영향에 대하여 살펴보았다. 순방향 ESD의 누적에 따른 열화 과정은 3 단계의 열화과정을 보이는 반면 역방향 ESD의 인가에 따른 열화 과정은 급격한 전기 및 광학적 특성 변화에 의하여 구분되는 2 단계의 열화과정을 보였다. 등가회로 모델 및 대신호 등가회로 모델을 이용하여 I-V 특성 및 그 미분특성을 분석함으로써 두 가지 ESD 조건에 의한 산화형 VCSEL의 전기 및 광학적 특성의 열화과정을 이해할 수 있었다.
공진기 내에 유전체 개구를 채용하고, $a-So/SiO_2_2$를 브라그 거울로 이용하고, 발진 파장이 38 $\mu\textrm{m}$인 표면 발광 테라헤르츠 레이저의 브라그 거울의 반사율을 계산하여 공진기 내 개구에 의한 회절 손실을 계산하였다. 공진기 내 개구의 크기, 위치, 두께 모두 회절 광 손실에 영향을 주는 것을 알 수 있었다 개구의 크기가 발진 파장의 5배 이상이면 개구의 두께가 회절 손실에 미치는 영향이 미미하나, 개구의 크기가 발진 파장보다 작은 경우에는 개구의 두께가 회절 광 손실에 많은 영향을 주는것을 알 수 있었다. 이러한 회절 손실을 줄이고 충분한 반사율을 얻기 위해서는 레이저 개구의 두께가 3nm 경우에 개구의 크기는 적어도 1$\lambda$이상이 되어야 함을 알 수 있었다.
최근 질화물계 발광다이오드(light emitting diode, LED) 소자는 핸드폰, 스마트 TV 등의 디스플레이 분야와 실내외조명, 감성조명, 특수조명 등의 조명분야에 그 응용분야가 급속히 확대되고 있다. 이러한 LED 소자는 에너지 절감과 친환경에 장점을 가지고, 가까운 미래에 조명시장을 대체할 것으로 예상된다. 이를 만족하기 위해서는 현재보다 더 높은 효율을 갖는 LED 개발이 요구되어지고 있는 상황이다. 일반적으로 질화물계 LED 소자의 효율은 내부양자 효율, 광추출 효율 등으로 나타낼 수 있다. 내부 양자효율은 성장된 결정의 질의 개선 및 다층의 이종접합 또는 다중양자우물 구조와 같이 활성층의 캐리어 농도를 높이는 접합구조로 설계되어 80% 이상의 효율을 나타낸다. 그러나 광추출 효율은 이에 미치지 못하고 있다. 이는 반도체 재료의 높은 굴절률로 인하여 빛이 외부로 탈출하지 못하고 내부로 반사되거나 물질 안에서 흡수가 일어나기 때문이다. 따라서 이러한 문제를 해결하기 위해 많은 연구 그룹들은, 표면에 패턴 형성하여 빛의 전반사를 줄여 그 효율을 올리는 연구결과를 보고하고 있다. 대표적인 방법으로는 wet etching, 전자빔 리소그라피, 나노임프린트 리소그라피, 레이저 홀로 리그라피, 나노스피어 리소그라피 등이 사용되고 있다. 이 중, 나노스피어 리소그라피는 폴리스틸렌 혹은 실리카 등과 같은 나노 크기의 bead를 사용하여 반도체 기판 표면에 단일층으로 고르게 코팅한 마스크로 사용하여 패턴을 주는 방법이다. 이 방법의 장점으로는 대면적에 균일한 패턴을 형성할 수 있고, 공정비용이 저렴하여 양산하기에 적합하다는 특징이 있다. 나노스피어 리소그라피를 통해서 표면에 생성된 패턴 모양의 각도에 따라서, 식각되는 깊이에 변화에 따라 실험한 결과들은 있지만, 아직까지 크기가 다른 나노입자들의 마스크 이용하여 형성된 패턴 밀도에 따른 광 추출 효과에 대한 연구가 많이 미흡하다. 따라서 본 연구에서는 다양한 크기의 실리카로 패턴을 형성시켜 패턴 밀도에 대한 광추출 효율의 효과에 대해서 조사하였다. 실험 방법으론, DI, 에탄올, TEOS, 암모니아의 순서대로 그 혼합 비율을 조정하여 100, 250, 500 nm 크기의 나노입자를 합성하였고 이것을 질화물계 LED의 표면 위에 단일층으로 스핀코팅 방법을 통해 코팅을 하였다. 그 후 ICP-RIE 방법으로 필라 패턴을 형성하였는데, 그 결과 100 nm SiO2 입자를 이용한 경우 $4.5{\times}10^9$/$cm^2$, 250 nm의 경우 $1.4{\times}10^9$/$cm^2$, 500 nm의 경우 $0.4{\times}10^9$/$cm^2$의 패턴의 밀도를 보여주었다(Fig. 1). 패턴의 밀도에 따라 전계광학적 특성을 확인하여 보았는데, 그 결과는 평평한 표면과 비교하였을 때 100 nm에서 383%, 250 nm에서는 320%, 500 nm에서는 244% 상승하는 결과를 보여주었다(Fig. 2). 이번 실험을 통해서 LED의 광추출 효율은 표면 모양과 깊이 뿐 아니라 밀도가 커질수록 그 효율이 올라간다는 사실을 알 수 있었다.
실리콘은 광센서, 태양전지, 발광다이오드 등 광소자 응용 분야에서 널리 사용되고 있는 물질이다. 그러나 실리콘의 높은 굴절율(n~3.5)은 표면에서 약 30% 이상의 Fresnel 반사를 발생시켜 소자의 효율을 감소시키는 원인이 된다. 따라서, 반사손실을 줄이기 위해서는 실리콘 표면에 효율적인 무반사 코팅을 필요로 한다. 기존의 단일 혹은 다중 박막을 이용한 무반사 코팅 기술은 물질간 열팽창계수의 불일치, 접착력 문제, 박막 두께 조절 및 적합한 굴절율을 갖는 물질 선택 어려움 등의 단점을 지니고 있다. 최근, 이러한 무반사 코팅 기술의 대안으로 곤충 눈 구조를 모방한 나노크기의 서브파장 격자구조 (subwavelength gratings, SWGs)에 대한 연구가 활발히 이루어지고 있다. 이러한 SWGs 구조는 공기와 반도체 표면 사이에 점진적, 선형적으로 변화하는 유효굴절율을 갖기 때문에, 광대역 파장영역뿐만 아니라 다양한 각도에서 입사하는 빛에 대해서도 효과적으로 Fresnel 표면 반사를 낮출 수 있다. 본 연구에서는 실리콘 기판 표면 위에 효율적인 무반사 특성을 갖는 계층적 SWGs 나노구조를 제작하기 위해, 레이저간섭리소그라피 및 열적응집금속 입자를 이용한 식각 마스크 패터닝 방법과 유도결합플라즈마 식각 공정을 이용하였다. 제작된 무반사 실리콘 SWGs 나노구조의 표면 및 식각 프로파일은 전자주사현미경으로 관찰하였고, 표면 접촉각 측정 장비를 이용하여 샘플 표면의 젖음성을 확인하였다. 제작된 샘플의 광학적 특성을 조사하기 위해 UV-vis-NIR 스펙트로미터와 엘립소미터 측정 시스템들을 이용하였다.
갈륨비소(GaAs)는 수직공진표면방출레이저, 발광다이오드, 태양전지 등과 같은 광전소자에 널리 사용되는 물질이다. 그러나 높은 굴절률을 갖는 갈륨비소는 표면에서 30% 이상의 반사율을 갖기 때문에 광손실로 인해 소자의 성능이 저하된다. 따라서 표면 Fresnel 반사율을 낮출 수 있는 효율적인 반사방지막이 필요하다. 최근, 열적 불일치, 물질 선택, 접착력 저하의 단점을 가지고 있는 기존 다중박막을 대체하는 생체모방 서브파장 나노구조가 활발히 연구되고 있다. 이러한 구조는 공기(air)부터 갈륨비소까지 선형적인 유효굴절률 분포를 갖는 유효 단일박막과도 같기 때문에 소자 표면에서의 광손실을 줄일 수 있다. 더욱이, 자연계의 나방의 각막과 나비의 눈의 구조 형태를 모방한 반도체 생체모방 복합 눈(compound eye)은, 즉 마이크로 렌즈모양과 서브파장 나노격자구조의 복합적 형태, 표면에서 우수한 반사방지 특성을 나타낸다. 본 연구에서는, 포토리소그래피와 유도결합플라즈마 식각법을 이용하여 GaAs 기판 표면에 마이크로 렌즈 모양의 패턴을 형성한 후, 스핀코팅을 이용하여 나노 크기를 갖는 실리카 구를 도포하여 건식 식각함으로써 복합 눈 구조를 갖는 갈륨비소 반사방지막을 제작하였다. 제작된 샘플의 표면 및 식각 형상은 전자현미경(scanning electron microscope)을 사용하여 관찰하였으며, UV-vis-NIR spectrophotometer를 사용하여 반사율을 측정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.