• Title/Summary/Keyword: 표면 반사

Search Result 855, Processing Time 0.028 seconds

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

A study on Yang Shi Tai Chi Chuan in Bartenieff Fundamentals Perspectives (바티니에프 기본원리를 통해 본 양식 태극권에 관한 연구)

  • Wang, Zhiquan
    • Trans-
    • /
    • v.8
    • /
    • pp.95-127
    • /
    • 2020
  • This research is based on using Bartenieff Fundamentals to analyze the fundamentals of Tai Chi Chuan's movements in order to develop the methods of relaxation from Tai Chi Chuan's principle movement movements It also shows that the two techniques have commonalities in many ways. First of all, taking a philosophical approach on the body movements of Tai Chi Chuan and Bartenieff, for both methods the ultimate goal is the integration of mind and body. In other words, there is a thread of connection between the East's body and mind monism and the west's Body Awareness. Secondly, looking at it from a Breath Support standpoint as used in the Bartenieff method, the two methods both use the breathing to naturally move the body and relax the body. In Tai Chi Chuan the Breath is the basis of life and the strength of the Body. So the breathing of Tai Chi chuan is what makes body and mind communicate, harmonize and integrate. In other words, Breathing in Tai Chi is realized through mental fusion and affects the movements. This is the same as the Breath Support of Bartenieff. It is said that in every aspect the Breath Support of Bartenieff influences the movement and changes both the inner and outer form of the body. Thirdly, looking at the Core Support used in the Bartenieff method, both methods emphasize core. At the same time of moving and being conscious of one's core, the usage of muscles can be deeper rather than superficial and this enables strong and flexible movement. In Tai Chi Chuan abdominal muscles used when one coughs are consciously engaged through abdominal breathing and so strength is collected in the core. When one exercises like that the core becomes more stable and breathing becomes more smooth. Fourthly, analyzing the Rotary Factor used in the Bartenieff Fundamentals, they both use rotary movement to reach the goal of physical relaxation. The rotation factor of Bartenieff allows movement to be easier and more free because of the characteristic of joint exercise where the center axis moved in three dimensions, this is the same in Tai Chi chuan. According to Tai Chi chuan's circle and Spiral Movements, it can achieve the relaxation through switching into a seamless flow and access space as much as possible. Finally, when looking at Developmental Patterning through Bonnie Bainbridge Cohen's Body-Mind Centering Work theory, presented from Bartenieff developmental model are similar with the developmental process of Tai Chi chuan Breath, Core-Distal Connectivity/Navel Radiation, Head-Tail Connectivity/Spinal Movement, Upper-Lower Connectivity/Homologous, Body-Half Connectivity/Homo-Lateral Connectivity, Cross-Lateral Connectivity/Contra-Lateral Connectivity. They are all similar. In other words, in Tai Chi Chuan energy is gathered in the core through breathing, upper and lower body are connected through the spine, not only homo-laterally but also cross-laterally. Through this study the expression of the dance movements can be more natural. Additionally based on the Body Awareness balance usage of the central axis, joints and body can develop the relax technique.

  • PDF

A Relative Study of 3D Digital Record Results on Buried Cultural Properties (매장문화재 자료에 대한 3D 디지털 기록 결과 비교연구)

  • KIM, Soohyun;LEE, Seungyeon;LEE, Jeongwon;AHN, Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.175-198
    • /
    • 2022
  • With the development of technology, the methods of digitally converting various forms of analog information have become common. As a result, the concept of recording, building, and reproducing data in a virtual space, such as digital heritage and digital reconstruction, has been actively used in the preservation and research of various cultural heritages. However, there are few existing research results that suggest optimal scanners for small and medium-sized relics. In addition, scanner prices are not cheap for researchers to use, so there are not many related studies. The 3D scanner specifications have a great influence on the quality of the 3D model. In particular, since the state of light reflected on the surface of the object varies depending on the type of light source used in the scanner, using a scanner suitable for the characteristics of the object is the way to increase the efficiency of the work. Therefore, this paper conducted a study on nine small and medium-sized buried cultural properties of various materials, including earthenware and porcelain, by period, to examine the differences in quality of the four types of 3D scanners. As a result of the study, optical scanners and small and medium-sized object scanners were the most suitable digital records of the small and medium-sized relics. Optical scanners are excellent in both mesh and texture but have the disadvantage of being very expensive and not portable. The handheld method had the advantage of excellent portability and speed. When considering the results compared to the price, the small and medium-sized object scanner was the best. It was the photo room measurement that was able to obtain the 3D model at the lowest cost. 3D scanning technology can be largely used to produce digital drawings of relics, restore and duplicate cultural properties, and build databases. This study is meaningful in that it contributed to the use of scanners most suitable for buried cultural properties by material and period for the active use of 3D scanning technology in cultural heritage.

A Study on Daytime Transparent Cloud Detection through Machine Learning: Using GK-2A/AMI (기계학습을 통한 주간 반투명 구름탐지 연구: GK-2A/AMI를 이용하여)

  • Byeon, Yugyeong;Jin, Donghyun;Seong, Noh-hun;Woo, Jongho;Jeon, Uujin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1181-1189
    • /
    • 2022
  • Clouds are composed of tiny water droplets, ice crystals, or mixtures suspended in the atmosphere and cover about two-thirds of the Earth's surface. Cloud detection in satellite images is a very difficult task to separate clouds and non-cloud areas because of similar reflectance characteristics to some other ground objects or the ground surface. In contrast to thick clouds, which have distinct characteristics, thin transparent clouds have weak contrast between clouds and background in satellite images and appear mixed with the ground surface. In order to overcome the limitations of transparent clouds in cloud detection, this study conducted cloud detection focusing on transparent clouds using machine learning techniques (Random Forest [RF], Convolutional Neural Networks [CNN]). As reference data, Cloud Mask and Cirrus Mask were used in MOD35 data provided by MOderate Resolution Imaging Spectroradiometer (MODIS), and the pixel ratio of training data was configured to be about 1:1:1 for clouds, transparent clouds, and clear sky for model training considering transparent cloud pixels. As a result of the qualitative comparison of the study, bothRF and CNN successfully detected various types of clouds, including transparent clouds, and in the case of RF+CNN, which mixed the results of the RF model and the CNN model, the cloud detection was well performed, and was confirmed that the limitations of the model were improved. As a quantitative result of the study, the overall accuracy (OA) value of RF was 92%, CNN showed 94.11%, and RF+CNN showed 94.29% accuracy.