• Title/Summary/Keyword: 표면접착필름

Search Result 70, Processing Time 0.025 seconds

Thermal Lamination of Polyethylene Film on Aluminum by Surface Modification (표면개질을 이용한 폴리에틸렌 필름과 알루미늄간의 열융착)

  • Cho, Dong-Lyun;Yun, Ta-Song
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.594-601
    • /
    • 2001
  • Direct thermal lamination of polyethylene film on aluminum plate without using adhesive was tried by modifying their surfaces to have polar groups. Polyethylene film was modified by treating with oxygen or acrylic acid plasma. Aluminum plate was modified by treating with boiling water or diaminocyclohexane plasma. Fairly high adhesion strength was obtained even in the case when only the polyethylene film was modified, and adhesion strength was so high that film was broken during the adhesion test if both the film and the aluminum plate were modified. Even chemical bonding seemed to be possible when the film treated with acrylic acid was laminated on the plate treated with diaminocyclohexane plasma by forming amide linkage through the reaction between COOH groups on the film surface and NH$_2$ groups on the plate surface.

  • PDF

Synthesis of Adhesion Promoters with Improved Compatibility and Properties of UV-Curable Adhesives Containing Adhesion Promoters (상용성이 개선된 접착 증진제의 합성 및 이를 함유한 자외선 경화형 접착제의 특성분석)

  • Park, Jung-Hyun;Won, Jonh-Woo;Kim, Ju-Yeol;Yoon, Yoo-Jung;Kwon, Oh-Hyeong;Hwang, Jin-Sang
    • Journal of Adhesion and Interface
    • /
    • v.19 no.4
    • /
    • pp.145-153
    • /
    • 2018
  • In this study, adhesion promoters with acrylate and carboxylic acid moiety were synthesized from malenized polybutadiene and 2-hydroxyethyl acrylate for producing adhesive film with low water absorption and high adhesion. The surface properties, adhesion strength, mechanical properties and water absorption of adhesive films were characterized according to the amount of acrylate and carboxylic acid in the synthesized adhesion promoters. As the carboxylic acid in the adhesion promoters increased, the adhesion strength showed a tendency to increase and the mechanical properties also improved compared to the commercial adhesion promoter. The compatibility of adhesion promoters improved remarkably due to the presence of polybutadiene (hydrophobic nature), maleic anhydride (hydrophilic nature) and carboxylic acid (hydrophilic nature).

Adhesion Characteristics of Polymer Material Treated by Atmospheric Pressure Plasma (상압 플라즈마 표면처리에 의한 고분자 재질의 접착특성 변화)

  • Seo, Seung-Ho;Chang, Sung-Hwan;Yoo, Yeoung-Een;Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.445-450
    • /
    • 2011
  • We studied the adhesion characteristics of polymer films (PC, PET, EVA) treated by atmospheric pressure plasma. The process parameters were the frequency, gas flow, and treatment time; we studied the effects of these parameters on the adhesion characteristics of the polymer materials. We used de-ionized water and diiodomethane as the polar and nonpolar solvents, respectively, for measuring the contact angles, and subsequently calculated the surface free energy of each polymer film. The adhesion characteristics were studied by carrying out a $180^{\circ}$ peel-off test. The polymer films treated with plasma developed a hydrophilic surface, which led to increased surface free energy and improved adhesion properties. From the results for contact angle, surface free energy, and adhesion strength, we obtained the optimal plasma-treatment conditions.

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating (다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교)

  • Kwon, Yongsung;Bae, Duckhwan;Shon, MinYoung
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

Characteristics of Silver Nanow ire Solution and Film Depending on Hydroxypropyl Methylcellulose Adhesion Promoter Addition (Hydroxypropyl methylcellulose 접착력 증진제 첨가에 따른 은 나노와이어 용액 및 필름의 특성 변화)

  • Seungju Kang;Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.54-59
    • /
    • 2023
  • Silver nanowire-based transparent electrodes are very attractive as a next-generation flexible and transparent electrode that can replace ITO-based flexible electrodes because they have excellent conductivity, transmittance and mechanical flexibility. However, weak understanding of the silver nanowire solution for the fabrication of silver nanowire-based transparent electrodes often cause abnormal operation of the electrical device or peeling problem of the electrode films when applied to electronic devices. Here, we studied a Hydroxypropyl Methylcellulose (HPMC) adhesion promoter, which is one of the additives for silver nanowire solution, to improve the understanding of silver nanowire solution. In detail, it is characterized how the HPMC changes the properties of silver nanowire solution and silver nanowire film, which is fabricated with silver nanowire solution including the HPMC adhesion promoter. As the characteristics of solution, polar surface tension and dispersive surface tension were measured. As the film characteristics, surface energy, surface morphology, silver nanowire density, and sheet resistance were analyzed.

RGD Fixation of Film Surface and Synthesis of Copolymer Comprising Malic acid (Malic acid 함유 공중합체의 합성 및 필름표면의 RGD 고정화)

  • 이찬우;송경헌
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.300-306
    • /
    • 2002
  • To study the effect of polymer compositions on the cell adhesion, copolymers of 3-(S)-[(dodecyloxycarbonyl) methyl]-1,4-dioxane-2,5-dione (DMD) and L-lactide were made, where DMD was synthesized form L-malic acid (L-MA) and glycolic acid. Furthermore, the copolymerization of DMD and L-lactide was performed using tin(II) octanoate as a catalyst. As a result of fixing RGD on the copolymer films, the cell adhesive peptide was fixable on the surface of the film. It was found out that the amount of fixation of RGD also increases by the increase in the amount of MA unit introduction. Since it is gradually decomposed over a long period and neither remains nor accumulation occurs, glycolic acid-$\beta$-dodecylmalate -lactic acid (D-PGML) is greatly expected as a potential biomaterial with improved slow degradability.

A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness (유연 복합재료 전극 제조 및 표면조도에 따른 접착 특성에 대한 연구)

  • Lee, Han-Young;Jung, Kyung-Chae;Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.242-247
    • /
    • 2014
  • The fabrication of flexible electrodes coated on the surface of a dielectric elastomer film, which is a type of electroactive polymer (EAP), was carried out. Controlled amounts of Xylitol powder were added (10, 30, 50 and 70 wt%) to the commercial conductive polymer (PEDOT:PSS) to enhance resilience of the electrode. To check resilience of the fabricated composite electrodes, tensile tests were carried out using silicone films coated with the polymer electrodes. From the test results, it was found that 70 wt% Xylitol containing conductive polymer had excellent elongation and high failure strains. Furthermore, surface of the silicone film was uniformly polished with various abrading papers to enhance the wettability of the conductive polymers on the surface of the silicone film. It was found that the silicone film polished with #120 abrading paper had the best wettability and guaranteed excellent bonding behavior.

Study of Adhesion according to Various Surface Treatments for Lithium Ion Secondary Battery Pouch Film (다양한 표면처리에 따른 리튬이온 이차전지용 파우치 필름을 위한 접착성에 관한 연구)

  • Kim, Do Hyun;Bae, Sung Woo;Cho, Jung Min;Yoo, Min Sook;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-234
    • /
    • 2016
  • Pouch film is manufactured by laminating aluminum foil, polyamide film and polypropylene film with an adhesive or extrusion resin. However, a surface treatment is required for the aluminum because bonding does not occur easily between the aluminum foil and the polymer film. Thus, for this study, surface treatment experiments were performed in order to confirm the effect on adhesion strength. First, a variety of surface treatment solutions were coated on aluminum foil, and contact angle and surface morphology analysis was carried out for the surface-treated aluminum. For lamination of the surface-treated aluminum foil with polyamide film, a polyurethane base adhesive was prepared for the adhesive strength test specimens. The adhesive strength between the aluminum foil and the polyamide film of the resulting specimens was measured (UTM). With such an experiment, it was possible to evaluate the effect on adhesive strength of the various surface treatments.