• Title/Summary/Keyword: 표면산화

Search Result 2,564, Processing Time 0.035 seconds

Fabrication of Superhydrophobic TiO2 Films without Color Alternation (색 변화 없는 초소수성 타이타늄 산화막 제조)

  • Kim, Seon-Gyu;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.339-339
    • /
    • 2015
  • 타이타늄을 2단계로 양극산화하여 색을 유지하며 표면에 튜브형태를 갖는 산화막을 제조하였다. 타이타늄을 양극산화 시, 전해질 농도, 양극산화 전압, 시간 등에 따라 다양한 색을 띄게 되는데, 기름기 등의 오염물질로 인한 색 변화, 내 지문성 등의 문제가 유발된다. 이에 타이타늄을 양극산화하여 나노튜브를 성장시킨 후, 기존 산화막 제조와 같은 조건으로 다시 양극산화하였다. 그 결과 기존 barrier 형태의 산화막 색이 구현되면서, 표면의 돌기형태에 따른 접촉각이 변화하게 되었다.

  • PDF

플라즈마 전해 산화 공정을 이용한 대면적 6061 알루미늄 합금의 표면 산화막 형성

  • Kim, Seong-Cheol;Yun, Sang-Hui;Seong, Gi-Hun;Gang, Du-Hong;Min, Gwan-Sik;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.217-217
    • /
    • 2012
  • 플라즈마 전해산화(Plasma Electrolytic Oxidation)는 수용액 중에서 Al, Mg, Ti 등의 금속표면에 산화막을 형성시키는 기술로서, 기존의 양극산화법과 유사한 장치에서 고전압을 가해 미세플라즈마 방전을 유도하여 치밀한 산화막을 형성하는 표면처리 기술이다. 본 연구에서는 6061 알루미늄 합금의 대면적 시편을 이용하여 PEO공정으로 산화막을 형성시켰다. 산화막의 조성 및 미세구조는 XRD와 SEM, EDS를 이용하여 분석하였다. 형성된 산화막은 회색에서 밝은 회색으로 시편 전면에 고르게 나타났다. 피막 성장인자를 정교하게 조절함으로써 강한 피막 접착력과 낮은 표면조도를 가지는 매끈한 표면을 얻을 수 있었고, 그에 따른 물성 변화를 분석하였다. 또한 시편의 크기에 관계없이 동일한 조건에서 동일한 물성이 나오는 것으로 분석되었다. 이를 통해 균질한 대면적 피막의 높은 신뢰성을 요구하는 다양한 산업분야에 적합한 표면처리 방법으로서 PEO공정이 활용될 수 있음을 확인하였다.

  • PDF

Effect of variation with heating pattern on the galvanizability of high strength steel (열처리 온도 및 시간 변화가 고장력강의 도금성에 미치는 영향에 관한 연구)

  • Park, Min-Seo;Baek, Du-Hyeon;Sim, Yeong-Jun;Im, Hui-Jung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.174-174
    • /
    • 2013
  • 현재 자동차 강판 시장에서는 승객들의 안전 확보와 연비 향상을 위하여 자동차 강판의 경량화 및 고장력화가 급속히 진행되고 있다. 더불어 소비자는 더욱 아름답고 멋있는 외관을 추구하면서 정교한 디자인이 가능할 수 있도록 높은 성형성을 갖는 강판에 대한 요구도 또한 증대되고 있다. 따라서 강도와 성형성을 동시에 확보할 수 있는 DP형, TRIP형 등의 다양한 컨셉을 갖는 변태강화형 고장력강에 대한 개발 요구가 점점 심화되고 있으나 이들 고장력강의 상 제어를 위하여 첨가된 Si, Mn등의 성분들이 표면에 안정한 산화물을 형성하기 때문에 이러한 고장력강은 표면 품질이 열위한 것으로 보고 되고 있다. 따라서 기존 연구에서는 열처리중 표면으로 확산되어 올라오는 Si, Mn 산화물의 저감을 위하여 분위기 중 산소농도나 노점등을 조절하거나, 산화전처리, 선도금처리 등을 통하여 Si, Mn 의 표면 선택산화를 제어하여 도금 결함을 최소화하려는 연구가 많이 진행되고 있다. 그러나 이러한 연구들은 대부분 강판 표면에서의 산화/환원의 반응에 대한 분위기 요인을 제어하는 연구들이며 실제 Si, Mn등의 산화성 원소들이 어떠한 조건에서 어떠한 경로들을 통해서 이동하여 표면으로 올라오는지에 대한 연구는 부족한 상황이다. 따라서 본 연구에서는 산화성 원소들의 표면 확산 거동에 대한 고찰을 위하여 다양한 열처리 온도 조건을 통한 표면 도금성 경향, 합급화 경향 및 표면 분석결과를 바탕으로 확산 거동에 대한 경향을 밝히고자 하였다.

  • PDF

Effect of Direct Current and Pulse Current on The Formation Behavior of Plasma Electrolytic Oxidation Films on Al Alloy (Al 합금의 플라즈마 전해산화 피막 형성 거동에 미치는 직류 및 펄스 전류의 영향)

  • Kim, Ju-Seok;Mun, Seong-Mo;Sin, Heon-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.29.1-29.1
    • /
    • 2018
  • 양극산화 표면처리 방법의 일종인 플라즈마 전해산화(PEO, Plasma electrolytic oxidation)는 금속 소재에 양극 전압을 인가하여 고경도의 산화 피막을 금속 표면에 형성시키는 표면처리 기술이다. PEO 공정은 피막의 국부적 유전체 파괴에 의한 아크의 발생을 동반하며, 형성된 산화 피막이 아크 발생에 의한 높은 열에 의해 결정화 되어 일반적인 양극산화 피막보다 우수한 경도와 내마모성을 가진다. 하지만 PEO 공정은 고전압을 필요로 하여 일반적인 양극산화 처리보다 소모되는 전력량이 많으며, 아크 발생에 의해 형성된 피막의 표면 거칠기가 높기 때문에 활용 분야가 제한되거나 후속 연마 공정을 필요로 하는 단점이 존재한다. 본 연구에서는 전류 파형이 알루미늄 합금의 플라즈마 전해산화 피막의 형성 거동에 미치는 영향을 직류 및 펄스전류를 사용하여 연구하였다. NaOH 및 $Na_2SiO_3$가 혼합된 전해액에서 직류 전류 밀도, 전압, 펄스폭을 달리하여 알루미늄 합금에 전류를 인가할 때 발생되는 아크의 거동, 형성된 산화 피막의 두께, 거칠기, 경도, 표면 및 단면 구조를 비교 분석하였다.

  • PDF

T-OLED의 반사전극으로 사용하기 위한 Ag 박막 표면의 UV에 의한 산화 및 KPFM을 이용한 표면 전위 측정

  • Kim, Seong-Jun;Kim, Su-In;Kim, Dong-Uk;Kim, Ju-Yeon;Lee, Eun-Hyeok;Sin, Dong-Hun;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.182.1-182.1
    • /
    • 2013
  • Silver (Ag)는 높은 반사율을 가지고 있어 Top-Emission Organic Light Emitting Diode (T-OLED)의 반사전극으로 사용하기 적합하지만 일함수가 낮은 단점 (4.3 eV)을 가지고 있다. 이런 낮은 일함수를 증가시키기 위하여 Ag 박막 표면을 산화시켜 일함수를 증가시키기 위한 연구가 진행중에 있으며, 이 연구에서는 UV로 $O_3$을 발생시켜 Ag 박막 표면을 산화시키기 위한 연구를 진행하였다. 특히, Ag 박막 표면의 일함수 변화를 측정하기 위하여 SPM (Scanning Probe Microscopy)의 KPFM (Kelvin Probe Force Microscopy) mode를 적용하여 nano 영역에서의 일함수 변화를 surface potential로 측정하여 UV 표면 산화에 의한 표면 일함수 형상을 확인하였다. Ag 박막은 rf magnetron sputter를 사용하여, Si 기판위에 300nm 두께로 증착시켰다. 이후 $O_3$ 발생되는 UV 램프로 Ag 박막 표면 30초 간격으로 최대 5분간 산화시켰으며, 이후 KPFM mode를 사용하여 산화 시간에 따른 Ag 박막 표면의 potential 변화를 측정하였다. 0~3분간 산화된 Ag 박막 표면의 potential은 약 6 mV로 일정하였으나 3분 이후 최대 110 mV까지 급격하게 변화하는 것을 확인할 수 있었다. Ag 박막 표면의 RMS roughness는 UV 산화처리 전0.7 nm였으나, potential이 급격하게 증가하는 시점인 3분 이후 2.83 nm로 약 400% 이상 증가하였다. 이를 통해 $O_3$ 발생 UV 램프로 산화된 Ag 박막의 표면 물성은 처리 시간에 따라 급격히 변하는 것을 확인하였다.

  • PDF

Optimum Condition for Anodization of Aluminum Alloy in High Temperature K2HPO4 Containing Glycerol Electrolyte (고온의 K2HPO4/글리세롤 전해질에서 알루미늄 합금의 양극산화를 위한 최적 조건)

  • Lee, Jae-Won;Lee, Hyeon-Gwon;Lee, Gi-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.69.1-69.1
    • /
    • 2018
  • 산업 현장에서 자주 사용되는 알루미늄 합금은 순도가 높은 알루미늄에 비해 경제성, 기계적 성질이 우수한 장점이 있다. 하지만 이런 합금들은 물리적, 화학적 성질이 순수 알루미늄과 달라 양극산화와 같은 표면처리가 쉽지 않다. 양극산화는 표면처리 기술의 대표적인 방법 중 하나로 인위적으로 산화피막을 형성하는 기술이다. 순도가 높은 알루미늄은 산성 전해질에서의 양극산화를 통해 다공성 산화피막을 형성할 수 있으며 그 구조로 인해 내식성, 내마모성 등 기계적, 화학적인 다양한 장점이 있다. 하지만, Mg, Si, Cr과 같은 성분이 함유된 알루미늄의 경우 산성 전해질에서 산화물을 형성되지 않는다. 본 연구에서 기존의 산성 전해질에서의 양극산화 방법이 아닌$K_2HPO_4$를 함유하는 고온의 글리세롤 전해질을 사용하여 양극산화를 진행하였다. 사용한 알루미늄은 산업용으로 자주 사용되는 3000계열의 알루미늄을 사용하였으며 균일한 양극산화를 위해 샌드페이퍼를 통한 연마과정을 통해 표면을 평탄화 하였다. 이후 전기화학적 에칭 과정을 거쳐 표면에 있는 자연산화막을 제거하여 표면 분석을 용이하게 하였다. 양극산화는 10wt%의 $K_2HPO_4$/글리세롤 전해질에서 전해질의 온도와 인가 전압을 달리 하여 진행하였다. 결과 $150^{\circ}C$ 이상의 온도에서 알루미늄 합금의 양극산화를 확인할 수 있었고 $170^{\circ}C$의 온도에서 인가 전압을 20V로 하였을 때 가장 정렬된 다공성 구조를 얻을 수 있었다. 본 연구 결과를 통해 산업용 알루미늄 합금의 양극산화를 통해 다공성 나노구조 산화물을 형성 시킬 수 있었다.

  • PDF

Formation and Growth of Oxide Films on AZ31 Mg Alloy Using Plasma Electrolytic Oxidation Method (플라즈마 전해산화법을 이용한 AZ31 마그네슘 합금 표면의 산화피막 형성 연구)

  • Mun, Seong-Mo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.74-74
    • /
    • 2013
  • 본 연구에서는 AZ31 마그네슘 합금의 내식성을 향상시키기 위하여 플라즈마 전해산화(PEO, plasma electrolytic oxidation)법을 이용하여 $5{\sim}50{\mu}m$ 두께의 산화피막을 형성시켰으며, 염수침지법, 동전위 분극실험 및 a.c. 임피던스 측정법을 이용하여 형성된 산화피막의 특성을 평가하였다. 플라즈마 전해산화 피막은 다양한 용액에서 펄스전류를 인가하여 형성하였으며, 플라즈마 전해산화 처리된 AZ31 마그네슘 합금 시편은 증류수에서 실링 처리할 경우 0.5 M NaCl용액에 침지 시 600 시간동안 부식이 일어나지 않았다.

  • PDF

PEO공법을 적용한 마그네슘 합금의 공정 변수에 따른 산화 피막의 특성

  • Nam, Seok-Hyeon;Lee, Jae-Eun;Na, Il-Chae;Kim, Yong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.125.1-125.1
    • /
    • 2016
  • 마그네슘 합금은 소재 특성상 표면처리가 필수불가결하다. 금속의 다양한 표면처리 방법 중 마그네슘 합금은 크게 화학적 반응을 이용해 산화막을 생성해 피막을 올리는 화성처리법과, 전해액 내에 침지시켜 전기를 걸어주어 금속 표면에 플라즈마 아크를 통해 산화막을 생성하는 PEO공법 두 가지 방법이 있다. 본 연구에서는 마그네슘 합금 소재에 PEO공법을 적용한 산화피막의 공정 변수에 따른 특성을 SEM, EDS, SST, potentiodynamic polarization 등으로 분석하였다.

  • PDF

균일막 형성을 위한 항공기 부품용 타이타늄의 양극산화 최적 공정

  • Lee, Da-Yeong;Han, A-Yeong;Jeong, Na-Gyeom;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.66.2-66.2
    • /
    • 2018
  • 금속의 양극산화 공정(anodizing)은 전해질 내 금속에 인위적으로 전위를 가해 금속 표면에 얇은 산화막(oxide layer)을 형성하여 금속의 내식성, 내마모성을 증가시키는 공정이다. 타이타늄은 가볍고 단단하여 산업분야에 유용하게 사용되며 이와 같은 양극산화 공정을 통해 내식성, 내마모성을 크게 높일 수 있다. 본 연구에서는 항공기 부품용 타이타늄의 최적 양극산화 조건을 찾기 위해 전압의 파형, 전해액의 조성에 따라 양극산화 실험을 진행하였다. SEM, AFM, EDS, 분광측색계, 색채색차계 등을 이용하여 각 조건에 해당하는 타이타늄의 산화막($Tio_2$)의 두께, crack 형태, pore 형태, 균일도, 표면 조도, 내전압, 색 수치를 분석하였다. 그 결과 전압 DC 140 V, 주성분이 KOH $Na_3PO_4{\cdot}12H_2O$인 전해액으로 이루어진 양극산화 조건에서 가장 균일하고 색 재현성이 우수한 타이타늄의 산화막($Tio_2$)을 형성하였다.

  • PDF