• Title/Summary/Keyword: 표면물성

Search Result 1,470, Processing Time 0.043 seconds

Effect of sputtering voltage - current on properties of ITO thin films deposited on PET (ITO/PET 박막의 물성에 영향을 미치는 스퍼터링 전압 - 전류 영향)

  • Park, So-Yun;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.87-88
    • /
    • 2015
  • 최근 Touch screen panels (TSPs) 의 높은 전기적 특성 및 고해상도 요구에 따라 고품질 초박막 ITO의 중요성이 대두되고 있다. 하지만, 초박막 ITO 필름은 얇은 두께로 인해 낮은 결정성을 가지므로 높은 전기전도성을 확보하기 힘들다. 따라서 본 연구에서는, 결정성을 향상시키기 위하여 초기 박막의 성장에 영향을 주는 인자를 제어하였으며, 이러한 인자들 중 자장강도 변화에 따른 ITO 박막의 물성 변화를 관찰하였다. 그 결과 ITO 초박막의 전기적 특성은 스퍼터링 전류보다 스퍼터링 전압에 크게 의존하는 것을 확인 할 수 있었다.

  • PDF

In-situ Stress behavior of Cu thin films during thermal evaporation (열증착법에 의한 구리박막의 실시간 응력 거동연구)

  • Ryu, Sang;Lee, Gyeong-Cheon;O, Seung-Geun;Kim, Yeong-Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.107-108
    • /
    • 2007
  • 박막형태의 소재는 일반적으로 광 전자 및 소재가 공 관련 산업에서 특수한 기능이 요구되는 부품 제조에 광범위하게 응용되고 있다. 이러한 박막 소재는 물성 면에서 벌크물질일 때의 물성과 매우 다를 수 있는 것으로알려져 있다. 박막에 스트레인이 존재하면 전자의 이동도나 밴드갭 에너지를 변화시켜 줄 수 있으며, 계면의 전위는 소자를 열화 시키는 역할을 하기도 한다. 이러한 이유로 박막 성장 시 실시간으로 스트레인을 관찰하고 이 결과를 실제 제조공정에 피드백 하여, 소자의 신뢰성을 확보하는 노력이 행해지고 있다. 구리박막의 실시간 응력거동은 F.Spaepen에 의해 보고된 초기 압축응력, 인장응력, 2차적으로 나타나는 점진성의 압축응력의 독특한 3단계 응력거동으로 나타나는 것으로 알려져 있으며, 본 실험에서는 박막증착도중 단시간 증착을 중단한 이후 재 증착을 하여 응력거동을 관찰함으로써 독특한 3단계 응력거동의 메커니즘을 알고자 하였다.

  • PDF

A study on Mechanical properties of Waterborne polyurethane dispersion by Monoammonium phosphate (Monoamonium Phosphate를 이용한 수분산 폴리우레탄 수지의 합성과 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we have synthesized waterborne polyurethane dispersion(WPU) and analyzed mechanical properties of WPU film and leather coatings in different content of monoammonium phosphate. According to the measured data by DSC, sample WPU-AM3 which included high content of monoammonium phosphate showed the highest Tm at $382^{\circ}C$. All samples had good solvent resistance. In tensile tests, WPU-AM3($2.130kg_f/mm^2$) had the lowest physical properties. Also abrasion resistance properteis and elongation properties were investigated, WPU-AM3 had lowest physical properties with 52.07 mg.loss for abraison and 615 % of elongation.

Effect of Surface Treated SiC on Thermal Stability and Mechanical Interfacial Properties of Carbon Fiber/Epoxy Resin Composites (탄소섬유 강화 에폭시 수지 복합재료의 열안정성 및 기계적 계면특성에 미치는 SiC 표면처리 영향)

  • 박수진;오진석;이재락;이경엽
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • In this work the effect of surface treated SiC on thermal stability and mechanical interfacial properties of carbon fiber/epoxy resin composites. The surface properties of the SiC were determined by acid/base values and contact angles. The thermal stabilities of carbon fiber/epoxy resin composites were investigated by TGA. The mechanical interfacial properties of the composites were studied in ILSS, critical stress intensity factor ($\textrm{K}_{IC}$), and critical strain energy release rate($\textrm{G}_{IC}$) measurements. As a result, the acidically treated SiC(A-SiC) had higher acid value than untreated SiC(V-SiC) or basically treated SiC(B-SiC). According to the contact angle measurements, it was observed that chemical treatments led to an increase of surface free energy of the SiC surfaces, mainly due to the increase of the specific(polar) component. The mechanical interfacial properties of the composites including ILSS, $\textrm{K}_{IC}$, and $\textrm{G}_{IC}$ had been improved in the specimens treated by chemical solutions. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between SiC and epoxy resin matrix.

Effects of Electrochemical Oxidation of Carbon Fibers on Mechanical Interfacial Properties of Carbon Fibers-reinforced Polarized-Polypropylene Matrix Composites (전기화학적 산화처리가 탄소섬유/극성화된 폴리프로필렌 복합재의 기계적 계면 특성에 미치는 영향)

  • Kim, Hyun-Il;Choi, Woong-Ki;Oh, Sang-Yub;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.476-482
    • /
    • 2013
  • In this work, the effects of electrochemical oxidation of carbon fiber surfaces on mechanical interfacial properties of carbon fibers-reinforced polarized-polypropylene matrix composites were studied with various current densities during the treatments. Surface properties of the fibers before and after treatments were observed by SEM, AFM, XPS, and contact angle measurements. Mechanical interfacial properties of the composites were measured in terms of critical stress intensity factor ($K_{IC}$). From the results it was found that $O_{1s}$ peaks of the fiber surfaces were strengthened after electrochemical oxidation which led to the enhancement of surface free energy of the fiber, resulting in good mechanical performance of the composites. It can be concluded that electrochemical oxidation of the carbon fiber surfaces can control the interfacial adhesion between the carbon fibers and polarized-polypropylene in this composites system.

Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment (탄소섬유 표면처리에 따른 탄소섬유/폴리프로필렌 복합재료의 기계적 물성 평가)

  • Han, Song Hee;Oh, Hyun Ju;Kim, Seong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.791-796
    • /
    • 2013
  • In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XPS, SEM, and single-filament tensile test. The interlaminar shear strength (ILSS) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the ILSS of the plasma-treated specimen increased with the treatment time. The ILSS of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen.

A Study on the Physical Properties and Coating of Metal Surface Using Traditional Lacquer Technique (전통 옻칠 기법을 이용한 금속표면 코팅 및 물성 연구)

  • Cho, Sung Mo;Oh, Han Seo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.302-311
    • /
    • 2021
  • This study uses traditional lacquer techniques to coat the metal surface and evaluates its physical properties to check the applicability of the lacquer coating. For this purpose, a total of six specimens were produced by setting the variation conditions for the number of times (1, 2, 3) and the heating temperature (120℃, 150℃) using SS275 metal(60*60 mm) and 'Wonju lacquer'. For analysis, chromaticity measurements, contact angle/surface energy measurements, Chemical Resistance, and cross-cut tests were used. The analysis showed that the corrosivity was improved and the adhesion of lacquer to the metal surface was excellent. There was no significant change in contact angle/surface energy. Also, there was no significant difference in color. Through this study, it was confirmed that lacquer on metal surfaces improves waterproofing and has a anticorrosion effect. We could also check the proper number of lacquer and heating temperature. Additional physical characteristics such as hardness and wear rate should be studied. It is also necessary to study how lacquer can be painted with a certain thickness.