• Title/Summary/Keyword: 표류 운동

Search Result 47, Processing Time 0.027 seconds

A Study on Nonlinear Motions of Submerged Circular Cylinder in Regular Wave (정현파중에서의 잠수된 원형실린더의 비선형 운동에 관한 연구)

  • Ho-Young Lee;Jong-Heul Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.32-39
    • /
    • 1998
  • A numerical analysis for large amplitude motions of submerged circular cylinder is presented. The method is based on potential theory and two-dimensional motions in regular harmonic waves are tented as an initial value problem. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed an assumed common boundary to a linear solution in outer domain. Calculations of the large amplitude motion of a submerged circular cylinder are directly simulated in time domain. It is shown that relative motion between the body and fluid particle gives a significant effect on the lift and drift motions.

  • PDF

Analysis of Manoeuvrability of a Ship in Waves by 3-Dimensional Panel Method (3차원 파넬방법에 의한 파중 선박의 조종성능 해석)

  • S.P. Ann;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.82-98
    • /
    • 1994
  • A mathematical model for the hydrodynamic forces acting on the ship manoeuvring in waves is formulated and a numerical method for the problem is developed. The motion of a ship, which manoeuvres in waves, may be thought to have two components; one is a high frequency component due to encounter waves, and the other is a low frequency component due to manoeuvring motion. So the method of two time scale expansion is used to divide linear boundary value problem. For the effects of waves on the manoeuvring motion of a ship, only the second order drift forces are considered. The integral equation for the velocity potential is solved by 3 dimensional panel method and hydrodynamic forces are calculated by direct integral method.

  • PDF

Reverse Drift Force of a Floating 2D-BBDB Wave Energy Absorber (2D-BBDB형 파 에너지 흡수장치 에 작용하는 음의 시간평균 파 표류력 해석)

  • Hong, Do-Chun;Hong, Sa-Young;Hong, Seok-Won;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.187-191
    • /
    • 2003
  • The motion and time-mean drift force of a 2-D floating BBDB in waves are studied with and without taking account of fluctuating air pressure in the air chamber. It has been found numerically that the drift for a of the BBDB is in the reverse direction of propagation of the incident waves over specific frequency ranges as found by McCormick through his experiment work. The drift force is calculated by Pinkster's near-field method. Since Maruo's formula method for the drift force is always positive, Maruo's formula is only approximate and should be replaced by the correct near-field method.

  • PDF

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

A Study on the Motion of a Single Point Moored Ship in Irregular Waves (불규칙파중 1점계류 선바의 거동해석에 관한 연구)

  • Lee, Seung-Keon;Jo, Hyo-Jae;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • The maneuvering equations of motion are derived to express the motion of a ship. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The linear wave forces whose periods are equal to those of incident waves and the nonlinear wave forces that make long period drift forces are computed for the simulation. The consideration of irregular waves and nonlinear wave force effects on the slew motion are carried on the analyzing the motion of ship in the regular and irregular waves.

Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동 해석)

  • 이호영;신현경;임춘규;강점문;윤명철
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.57-62
    • /
    • 2000
  • The very large flcating structure which am be used for as airport may be as large as several kilomet wide. The first order wave forces as well as wave drift forces are very important forces on such a very large floating In the present studv, the time simulation of motion responses with dolphin-moored VLFS in waves is presented The coeffcients and wave forces involved in the equations are obtained from a three-dimensionul panel method in the frequc The horizontal drift forces and mooring forces for dolphin systems are taken into account. As for numerical example, analyses are carried out for a VLFS in irregular wave condition

  • PDF

Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동)

  • H.Y. Lee;H. Shin;C.G. Lim;O.H. Kim;J.M. Kang;M.C. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.10-18
    • /
    • 2001
  • The very large floating structure which can be used for as airport may be as large as several kilometer long and wide. The first order wave forces as well as wave drift forces are very important forces on such a very large floating structures. In the present study, the time simulation of motion responses for dolphin-moored VLFS in waves is presented. The hydrodynamic coefficients and wave forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The horizontal drift forces and mooring forces for dolphin systems are taken into account. As for numerical example, time domain analyses are carried out for a VLFS(Phase I) in irregular wave condition.

  • PDF

Motion Analysis of Two Point Moored Oil Tanker (2점 계류된 선박에 대한 운동 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.232-236
    • /
    • 2003
  • The anchor is laid on seabed and the main engine is worked to against incident environmental loads in typoon. As the main engine is broken down in the storm, the anchor chain is cutted and the vessel is drifted. Although a ship is moored by two point mooring lines to keep the her position, a ship is crashed into a rock because of typoon and the accident of oil spilling may be occured. In this paper, we studied the position-keeping of a ship which is analyized based on the slow motion maneuvering equations considering wave, current and wind. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical of MMG. The two point mooring forces are quasisatatically evaluated by using the catenary equation. The coefficeints of wind forces are modeled from Isherwood’s emperical data and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two point moored ship are simulated considering wave, current, wind load in time domain.

  • PDF

A Dynamic Analysis of Tension-Legged Circular Cylinder in Irregular Waves (인장계류된 원통형 실린더의 동적 거동 해석)

  • Hwang, Jae-Hyuck;Jo, Hyo-Jae;Kwon, Kang-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.259-264
    • /
    • 2002
  • The technology development for ocean resources can be represented by the increase of water depth. TLP, Tension Leg Platform, is one of the most feasible systems for deep sea development. TLPs show a complex dynamic behavior resulting from the dynamic interactions among platform, tether system and riser system due to their hydrodynamic and structural dynamic characteristics in waves. This paper aims at the theoretical and experimental analysis on motion response of TLP in waves. It is composed of two parts as follows ;(1) wave and wave loadings (2) TLP motion.

Transient Motion Analyses for a Ship Advancing in Irregular Waves (불규칙파 중에서 전진하는 선박에 대한 시간영역 운동해석)

  • Ho-Young Lee;Hong-Shik Park;Hyun-Kyoung Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.47-53
    • /
    • 2001
  • When a ship advancing in waves is subjected to impact forces or irregular forces, the motion analyses for ship are convenient for being calculated in the time domain. The added mass, wave damping coefficients, wave exciting forces and mean drift forces are calculated by 3-Dimensional panel method used the translating pulsating Green function in the frequency domain and the motion equations which are considered by the memory effect due to waves are numerically solved by using the Newmark-$\beta$ method in the time domain. The motion analyses are carried out for a Series 60($C_B=0.7$) moving in irregular waves. The items of calculation are 6-degree motions, accelerations at the fore and after position, numbers of deck wetness and numbers of exposure at ship-bottom, etc. Moreover, the thrust addition in waves is examined by considering the time mean drift forces in the motion equations of time domain.

  • PDF