• Title/Summary/Keyword: 폴리트로픽

Search Result 6, Processing Time 0.017 seconds

Development of a Polytropic Index-Based Reheat Gas Turbine Inlet Temperature Calculation Algorithm (폴리트로픽 지수 기반의 재열 가스터빈 입구온도 산출 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.483-494
    • /
    • 2023
  • Recently, gas turbine generators are widely used for frequency control of power systems. Although the inlet temperature of a gas turbine is a key factor related to the performance and lifespan of the device, the inlet temperature is not measured directly for reasons such as the turbine structure and operating environment. In particular, the inlet temperature of the reheating gas turbine is very important for stable operation management, but field workers are experiencing a lot of difficulties because the manufacturer does not provide information on the calculation formula. Therefore, in this study, we propose a method for estimating the inlet temperature of a gas turbine using a machine learning-based linear regression analysis method based on a polytropic process equation. In addition, by proposing an inlet temperature calculation algorithm through the usefulness analysis and verification of the inlet temperature calculation model obtained through linear regression analysis, it is intended to help to improve the level of reheat gas turbine combustion tuning technology.

Development of program for the automotive air conditioning system analysis (자동차 에어컨 시스템 해석 프로그램의 개발)

  • 홍진원;최영기;이정희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.227-237
    • /
    • 1998
  • A numerical simulation has been carried out for the automotive air conditioning system. The purpose of this simulation is to present the methods for simulating car air conditioning components, systems and cool-down performance by computerized mathematical model and to analyze the performance of A/C system. In analyzing the heat exchanger(evaporator and condenser), the finite volume model which has a merit in predicting the temperature field in detail because it can consider partial variation of thermal property and heat transfer coefficient is used. In analyzing the compressor, the polytropic approach which regards the actual compression process as a reversible polytropic process is employed. In analyzing vehicle passenger compartment, the thermal network is employed to simulate the car cool down process. This A/C system program can be used for analyzing a component performance when a component is alternated or designed and for analyzing the engine cooling system when A/C system is operated.

  • PDF

A Study on the Evaluation of Scavenging Efficiency in Two- Stroke Engines by Analysis of the In-Cylinder Pressure Data (연소실 압력을 이용한 2행정 엔진의 소기효율 측정연구)

  • 김영민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.66-75
    • /
    • 1999
  • In two-stroke engines, methods of evaluating scavenging effciency have been studied in parallel with trials for improvement of scavenging process. But simulating methods have a wide difference with difference with scavenging process in real engines and methods of evaluating scavening efficiency in real engines are very difficult and very expensive. This study shows that there is a possbility of evaluating scavenging efficiency in real engines very easily by analysis of in-cylinder pressure data. And as a characteristics two-stroke engines, the poly tropic indices in the process of compression are varies with degreeof scavenging and good representatives of scavenging efficiency.

  • PDF

Rational Efficiency of Compression Processes by the Second Law of Thermodynamics (열역학 제2법칙에 의한 압축과정의 합리적 효율)

  • 정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1200-1210
    • /
    • 1990
  • Conventional efficiencies of the adiabatic compression process such as isentropic efficiency and polytropic efficiency can be explained as exergetic efficiencies replacing the reference atmospheric temperature with the temperature which can be determined in the process itself. So that, other efficies such as maximum isentropic efficiency can be defined by giving proper reference temperatures. By applying the same logical principles, exergetic and other rational efficiencies for the non-adiabatic compression process are also defined and discussed for their physical meanings and reasonable engineering applications.

Comparative Study on the Several Types of Double-Acting Oleo-Pneumatic Shock Absorbers of Aircraft Part I. Mathematical Modeling (항공기 올레오식 2중 완충기 종류에 따른 특성 비교 연구 Part I. 수학적 모델링)

  • Lee, Cheol Soon;Jeong, Seon Ho;Kim, Kyung Jong;Kim, Jeong Ho;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.939-950
    • /
    • 2017
  • In this work, mathematical models are newly presented for three types of double-acting oleo-pneumatic shock absorbers as the first part of a comparative study on the several types of double-acting oleo-pneumatic shock absorbers. After a typical single-acting shock absorber model is presented for the sake of completeness, mathematical models of three types of double-acting shock absorbers are proposed. To derive the models, Bernoulli equation and orifice discharge coefficient are utilized along with the assumptions of incompressibility and poly-tropic process. The proposed models are expected to be used for investigation of the salient features of several types of double-acting oleo-pneumatic shock absorbers.

Water Hammer in the Pump Pipeline System with an Air Chamber (에어챔버가 설치된 가압펌프 계통에서의 수격현상)

  • Kim, Sang-Gyun;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2007
  • Water hammer following the tripping of pumps can lead to overpressures and negative pressures. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient is modeled using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the effects of the polytropic exponent, the discharge coefficient and the wave speed on the result of the numerical analysis were examined. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effects of related parameters to minimize water hammer have been investigated by both field measurements and numerical modeling.