• Title/Summary/Keyword: 폴리아미드/유리섬유 복합재료

Search Result 2, Processing Time 0.016 seconds

Effect of Acrylic Acid-modified Polyethylene Wax Using Sequential Reaction on Properties of Polyamide/Glass Fiber Composite (폴리아미드/유리섬유 복합재료의 물성에 대한 연속반응 아크릴산 변성 폴리에틸렌 왁스의 영향)

  • Kim, Hyochul;Kim, Hyung-Il;Han, Won-Hee;Hong, Min-Hyuk;Lee, Hyunwoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Polymer composites are widely used as industrial materials requiring high mechanical properties. Glass fibers and fillers, which are used as a reinforcement in composites, usually have some problems such as nonuniform dispersion and poor interfacial adhesion. In this study, an acrylic acid-modified polyethylene wax was synthesized by the sequential reaction of pyrolysis of polyethylene followed by grafting with a polar acrylic acid. The acrylic acid-modified polyethylene wax was applied to polymer composites of the polyamide matrix and glass fiber reinforcement. The effect of acrylic acid-modified polyethylene wax on physical properties of polyamide based composites was thoroughly investigated.

Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance (엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구)

  • Seong-Hun Yu;Hyun-Sung Yun;Dong-Hyun Yeo;Jun-Hee Lee;Jong-Su Park;Jee-hyun Sim
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.59-67
    • /
    • 2024
  • Research was conducted on a PA material-based composite material manufacturing method for application to engine mount brackets. Engine mount brackets must have heat resistance, impact resistance, and damping performance. PA66 resin was used as the base material for the composite material. The glass fiber was used as the reinforcement material. The composite material was manufactured using the injection molding method. The thermal, mechanical, and morphological characteristics were analyzed depending on the content of glass fiber. 3D model was created using the property evaluation database of composite materials(input data). The damping performance of the generated 3D model was extracted as out-put data. The reason for evaluating the characteristics of PA-based composite materials and conducting simulations on the damping performance of 3D models of engine brackets is because product performance can be predicted without manufacturing actual automobile parts and conducting damping performance tests. As a result of the damping simulation, damping performance tended to increase proportionally as the mass fraction of the reinforcement increased. But above a certain level, it no longer increased and slightly decreased. As a result of comparing the actual experimental values a nd the simulated values, the approximate value was within ±5%.