• Title/Summary/Keyword: 폴리머 재료

Search Result 844, Processing Time 0.032 seconds

폴리머 열교환기 설계 및 소재기술

  • O, Dong-Uk;Song, Chan-Ho;Lee, Gong-Hun
    • Journal of the KSME
    • /
    • v.53 no.4
    • /
    • pp.49-53
    • /
    • 2013
  • 이 글에서는 기존 플라스틱 대비 최고 10배 높은 열전도율, 알루미늄에 버금가는 강도, 그리고 뛰어난 내환경성을 가지며, 금속소재 대비 가볍고 가공성이 좋은 폴리머 복합재료 제조 기술과 이를 극한 환경용 열교환기의 재료로 적용하기 위한 연구에 대해 소개하고자 한다.

  • PDF

Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • The impact strength and fracture behavior of rubber/polymer composites were investigated with respect to two factors: (i) characteristic ratio, $C_{\infty}$ as a measure of chain flexibility of the polymer matrix and (ii) the rubber particle size in polymer blend system. In this study C was controlled by the composition ratio of polyphenylene oxide (PPO) and polystyene (PS). Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted. Finite element analysis were carried out to gain understanding of plastic deformation mechanism (shear yielding and crazing) of these materials. Shear yielding was found to be enhanced when the flexibility of matrix polymer was relatively low and the rubber particles were small.

  • PDF

Physical Properties of Polymer Composite Recycling Recycled Aggregate (순환골재를 재활용한 폴리머 복합재료의 물성)

  • Hwang, Eui-Hwan;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Nowadays, recycling of recycled aggregates from the waste concrete is seriously demanded for the protection of environment and the shortage of aggregates owing to the large scale construction project. In this study, for the development of polymer composite recycling recycled aggregates from the waste concrete, twenty five specimens of the polymer composite were prepared with the five levels of replacement ratios of recycled aggregates (0, 25, 50, 75, 100%) and polymer-cement ratios (0,5, 10, 15, 20%), respectively. For the evaluation of the performance of polymer composite specimens, various physical properties such as compressive and flexural strengths, water absorption, hot water resistance, total pore volume and porosity were investigated. As a result, physical properties of polymer composite were remarkably improved with an increase of polymer cement ratios, but greatly decreased with the replacement ratios of recycled aggregates.

예열된 시험체를 사용한 고온가열하에서의 폴리머 시멘트 모르타르의 역학적 특성에 관한 연구

  • Kim, Hyeong-Jun;Kim, Dong-Ik;Yun, Jun-Su;An, Byeong-Gwon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.29-30
    • /
    • 2013
  • 폴리머 시멘트 모르타르(Polymer-Modified Cement Mortar, 이하, PCM으로 칭함)는 일반 시멘트 모르타르와 비교해서 접착성, 치밀성, 내약품성, 시공성등이 우수한 재료로, 콘크리트 구조물의 보수 보강에 필수불가결한 재료로 인식되고 있다. 그러나, 혼입된 폴리머는 유기물 재료로, 화재와 같은 고온을 받는 경우에는 무기계 재료인 일반 모르타르 및 콘크리트와는 또 다른 고온역에서의 성상을 보일 것으로 예상된다. 이로 인해, PCM으로 보수 보강된 건축물에 화재가 발생할 경우, 고온에서의 안전성 및 화재 후의 보수 보강 필요성에 대한 평가를 행할 필요가 있다. 이에 본 논문에서는 평가시 기본적인 데이터로 활용될 수 있는 PCM의 고온노출시의 역학적 특성에 대한 검토방안으로, 기존의 실험조건 및 실험방법을 응용한 새로운 실험방법을 적용, 비교검토를 행하고, 고온영역에서의 PCM의 역학적 특성에 대해 고찰했다.

  • PDF

Effects of Polymer in Properties of Pre-mixed Type Mortar for Concrete Repair (폴리머가 프리믹스 타입의 보수용 모르타르의 성질에 미치는 영향)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.153-159
    • /
    • 2006
  • Recently, the polymer is used as an admixture in the repair mortar, which contains various admixtures and mineral admixtures. In this study, the fresh and mechanical properties of repair mortar influenced by the types of polymers(classified as E.V.A.) and the range of polymer ratio were investigated. It was found that with increasing the ratio of polymer, mechanical properties(compressive strength, flexural strength, adhesive strength) of repair mortar is improved and drying shrinkage is increased.

Evaluation of Mechanical Property Variation of Epoxy Based Compliant Polymer Concretes Exposed to UV Light (에폭시 기반 연성 폴리머 콘크리트의 자외선 노출에 의한 기계적 물성평가)

  • Roh, In-Taek;Jung, Kyung-Chae;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.236-241
    • /
    • 2014
  • This paper aims to evaluate material property variation of polymer concretes under ultra-violet exposure condition. The components and mixing ratio of the polymer composite specimens were determined by the previous research results. The equivalent UV exposure time was calculated with the consideration of the power of metal halide lamp and maximum 3 years were selected for the experiments. From the tests, it was found that the generated heat during UV exposure affected much the material properties of polymer concrete by means of post cure. As a result, the compressive strength increased and ductility factor decreased.

Performance Evaluation of Revetment Method Using Bio-polymer (바이오 폴리머를 이용한 호안 공법의 성능 평가)

  • Kim, Myounghwan;Lee, Du Han;Lee, Kang-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.224-224
    • /
    • 2020
  • 새롭게 개발된 미생물의 부산물인 바이오 폴리머는 토양의 강도를 높이고, 식물의 생장을 촉진시킨다. 본 연구에서는 실규모 수리 실험을 수행하여 바이오 폴리머를 이용한 호안 공법의 침식 저항 성능을 평가하였다. 실험을 위하여 다수의 호안 공법 시험체를 제작하였고, 이 시험체를 실 규모 실험수로에 설치하고 수리 실험을 통해 토양 손실과 이에 따른 한계 소류력을 결정하였다. 실험에는 일반 흙을 피복한 시험체, 바이오 폴리머와 혼합한 흙을 피복한 시험체, 식생매트와 바이오 폴리머 혼합토를 결합한 시험체 등이 사용되었다. 실험결과 재료나 식생의 활착도에 따른 차이는 있었으나 바이오 폴리머를 이용한 시험체의 침식 저항 성능이 바이오 폴리머를 이용하지 않은 시험체에 비해 높게 나타나는 것은 일관되게 확인 할 수 있었다. 이러한 결과는 바이오 폴리머를 이용한 호안공법이 기존 호안 공법의 침식 저항성능을 향상 시킬 수 있음을 보여준다. 바이오 폴리머를 제방 호안 시공에 활용한다면 홍수로 인한 제방의 유실이나 파괴를 상당 부분 예방할 수 있을 것이다.

  • PDF

Comparison of Physical Properties of Permeability Concrete Using Acrylic Polymer (아크릴 폴리머를 사용한 투수 콘크리트의 물성 비교 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.265-271
    • /
    • 2019
  • The aim of this paper was to improve the shortcomings of Pitcher Concrete, a conventional ethylene-based polymer used in combination with the other components, and present basic data for use as improved road pavement material by applying an acrylic polymer. Existing ethylene polymer-based pitcher concrete materials were selected. Acrylic polymer was then added and the resulting mixture was evaluated. The compressive strength of the existing ethylene-based polymer pitcher concrete combination was low due to the large air gap, and a compressive strength of 24MPa was observed on the 28th day of road use, as defined by KS for an acrylic polymer-based pitcher concrete combination. Regarding the bending strength, the combined strength of the acrylic polymer-based pitcher concrete was excellent, and the factor of the pitcher was measured above the reference, 0.1(mm/s), in all variables. All parameters measured were less than 1%. The acrylic polymer mixing characteristics were able to maintain the dynamic modulus of elasticity for more than 120 cycles, but not more than 80 cycles for the other combinations. Therefore, the addition of more acrylic polymer than conventional ethylene polymer base is effective in improving the durability.

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test (직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험)

  • Kim, Jee-Sang;Park, Jong-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.

The Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.1.1-4
    • /
    • 1999
  • The toughening mechanism and fracture behavior of rubber/polymer composites were investigated with respect to two factors; (1) the composition ratio of polymers(PPO and PS which have a different chain flexibility) and (ii) the rubber particle size in PPO/PS blend system Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted, Finite element analysis were carried out to gain understanding of plastic deformation(shear yielding and crazing) of these materials.

  • PDF