• Title/Summary/Keyword: 폴리머센서

Search Result 106, Processing Time 0.025 seconds

Implantable Flexible Sensor for Telemetrical Real-Time Blood Pressure Monitoring using Polymer/Metal Multilayer Processing Technique (폴리머/ 금속 다층 공정 기술을 이용한 실시간 혈압 모니터링을 위한 유연한 생체 삽입형 센서)

  • Lim Chang-Hyun;Kim Yong-Jun;Yoon Young-Ro;Yoon Hyoung-Ro;Shin Tae-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.599-604
    • /
    • 2004
  • Implantable flexible sensor using polymer/metal multilayer processing technique for telemetrical real-time blood pressure monitoring is presented. The realized sensor is mechanically flexible, which can be less invasively implanted and attached on the outside of blood vessel to monitor the variation of blood pressure. Therefore, unlike conventional detecting methods which install sensor on the inside of vessel, the suggested monitoring method can monitor the relative blood pressure without injuring blood vessel. The major factor of sudden death of adults is a disease of artery like angina pectoris and myocardial infarction. A disease of circulatory system resulted from vessel occlusion by plaque can be preventable and treatable early through continuous blood pressure monitoring. The procedure of suggested new method for monitoring variation of blood pressure is as follows. First, integrated sensor is attached to the outer wall of blood vessel. Second, it detects mechanical contraction and expansion of blood vessel. And then, reader antenna recognizes it using telemetrical method as the relative variation of blood pressure. There are not any active devices in the sensor system; therefore, the transmission of energy and signal depends on the principle of mutual inductance between internal antenna of LC resonator and external antenna of reader. To confirm the feasibility of the sensing mechanism, in vitro experiment using silicone rubber tubing and blood is practiced. First of all, pressure is applied to the silicone tubing which is filled by blood. Then the shift of resonant frequency with the change of applied pressure is measured. The frequency of 2.4 MHz is varied while the applied pressure is changed from 0 to 213.3 kPa. Therefore, the sensitivity of implantable blood pressure is 11.25 kHz/kPa.

Synthesis of Enzyme-Containing PEG Hydrogel Nanospheres for Optical Biosensors (광바이오센서용 효소를 함유한 PEG 수화젤 나노입자의 합성)

  • Kim, Bum-Sang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.613-616
    • /
    • 2005
  • In this word as the first step to develop optical biosensors for a single cell level analysis, the preparation method of nano-scale polymer hydrogel spheres containing an enzyme was set up and the feasibility of the spheres as optical biosensors was investigated. The horseradish peroxidase (HRP) was encapsulated in the PEG hydrogel spheres by suspension photopolymerization, yielding spheres of the average size of 305 nm. After the polymerization, the incorporation and activity of HRP within the spheres were determined by the production of fluorescence resulted from the enzymatic reaction between HRP and $\H_{2}O_{2}$. The fluorescence emission response of the HRP-loaded PEG hydrogel spheres increased by nearly 300$\%$ as hydrogen peroxide concentration was changed from 0 to 11 nM in the presence of Amplex Red. The results suggest that the method to prepare the PEG hydrogel nanospheres containing an enzyme could be used for developing optical biosensors to measure various analytes in the very small samples like a single cell.

Introduction of Various Amine Groups onto Poly(glycidyl methacrylate)-g-MWNTs and their Application as Biosensor Supports (폴리(글리시딜 메타크릴레이트)가 그래프트된 다중벽 탄소나노튜브에 다양한 아민 그룹의 도입과 바이오센서 지지체로서의 응용)

  • Chung, Da-Jung;Kim, Ki-Chul;Choi, Seong-Ho
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.470-477
    • /
    • 2012
  • A tyrosinase-immobilized biosensor was developed based on various amine-modified multi-walled carbon nanotube (MWNT) supports for the detection of phenolic compounds. MWNTs with various amine groups were prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto MWNT supports and the subsequent amination of poly(GMA) graft chains. The physical and chemical properties of the poly(GMA)-grafted MWNT supports and the aminated MWNT supports were investigated by SEM, XPS, and TGA. Furthermore, the electrochemical properties of the prepared tyrosinase-modified biosensor based on MWNT supports with amine groups were also investigated. The response of the enzymatic biosensor was in the range of 0.1-0.9 mM for the concentration of phenol in a phosphate buffer solution. Various parameters influencing biosensor performance have been optimized: binder effects, pH, temperature, and the response to various phenolic compounds. The biosensor was tested on phenolic compounds contained in two different commercial red wines.

Fabrication of Electrochemical Microbial Biosensor Based on MWNT Supports Prepared by Radiation-Induced Graft Polymerization (방사선 그래프트법에 의해 제조된 탄소나노튜브 지지체를 기반으로 한 전기화학 미생물 바이오센서의 제작)

  • Shin, Soo-Ran;Kwen, Hai-Doo;Choi, Seong-Ho
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • A multi-walled carbon nanotube (MWNT) support with dual properties, an ionic property via tetra-amine and unpaired electrons via tri-amine, was prepared by radiation-induced graft polymerization of glycidyl methacrylate (GMA) and the subsequent amination of its epoxy group. The electrochemical microbial biosensor (EMB) was then fabricated by immobilization of a microbe (Alkaligenes spp.) onto the dual property-modified electrode, which was prepared with the mixture of the MWNT support and a $Nafion^{(R)}$ solution on a glass carbon (GC) electrode surface by a hand-casting method. The sensing range of the prepared EMB for phenol in a phosphate buffer solution was 0.005~7.0 mM. The total concentration of phenolic compounds in a commercial red wine was also determined using the EMB.

Preparation of Water-Resistant Humidity Sensor Using Photocurable Reactive Oligomers Containing Ionene Unit and Their Properties (이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성)

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • New polyelectrolytes derived from ionene-containing photocurable reactive oligomer (PIDM) were prepared for water-resistant humidity-sensitive membranes. The mixture of PIDM, hexamethylene dimethacrylate (HDM), pentaerythritol triacrylate dimer (SP1013), and photoinitiator was simultaneously coated on the sensor electrode with photoinitiated radical polymerization. The pretreatment of the substrates with vinyl-type silane-coupling reagent was performed for improving the water durability and stability of the sensors at high temperature and humidity. When the resistance dependences on the relative humidity of the crosslinked PIDMs were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was required for the humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, response time, water durability, and high temperature/humidity stabilities were measured and evaluated as a humidity-sensing membrane.

Fabrication of a Parallel Polymer Cantilever to Measure the Contractile Force of Drug-treated Cardiac Cells (약물처리된 심장세포의 세포 수축력 측정을 위한 병렬 폴리머 캔틸레버 제작)

  • Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Thus far, several in vivo biosensing platforms have been proposed to measure the mechanical contractility of cultured cardiomyocytes. However, the low sensitivity and screening rate of the developed sensors severely limit their practical applications. In addition, intensive research and development in cardiovascular disease demand a high-throughput drug-screening platform based on biomimetic engineering. To overcome the drawbacks of the current state-of-the-art methods, we propose a high-throughput drug-screening platform based on 16 functional high-sensitivity well plates. The proposed system simulates the physiological accuracy of the heart function in an in vitro environment. We fabricated 64 cantilevers using highly flexible and optically transparent silicone rubber and placed in 16 independent wells. Nanogrooves were imprinted on the surface of the cantilever to promote cell alignment and maturation. The adverse effects of the cardiovascular drugs on the cultured cardiomyocytes were systematically investigated. The 64 cantilevers demonstrated a highly reliable and reproducible mechanical contractility of the drug-treated cardiomyocytes. Real-time high-throughput screening and simultaneous evaluation of the cardiomyocyte mechanical contractility under multiple drugs verified that the proposed system could be used as an efficient drugtoxicity test platform.

Humidity Sensor of Polymethacrylate with 4th Ammonium Salt (4차 암모늄 염을 포함하는 폴리메타크릴레이트 습도센서)

  • Hong, Chae-Hwan;Kim, Se-Hoon;Nam, Byeong-Uk
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.255-262
    • /
    • 2007
  • In this work, two types of copolymers are manufactured by a radical polymerization to develop a material for humid membrane. Each copolymer contains three monomers that have functions to improve humid-resistance, membrane stability, flexibility, impedance, and adhesion to the electrode. MDBAB (N,N'-dimethyl-2-methacryloxyethyl-3-bromopropyl ammonium bromide) having a salt form decreases the impedance of the humid membrane and reacts with amines to produce a cross-linking structure. HEMA (2-hydroxyethyl methacrylate) has an important role which reduces the impedance and increases the adhesion strength to the electrode. The other monomers are DAEMA (N,N'-dimethylamino ethyl methacrylate), 4-VP(4-vinyl pyridine), and 2-EHA(2-ethylhexyl acrylate) and all the monomers are formulated with several compositions to make a humid membrane. At specific composition, we could attain a satisfactory results having good performance and long term durability.

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Optical Current Sensors with Improved Reliability using an Integrated-Optic Reflective Interferometer (반사형 간섭계를 이용하여 신뢰성을 향상시킨 광전류센서)

  • Kim, Sung-Moon;Chu, Woo-Sung;Oh, Min-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.17-23
    • /
    • 2017
  • Optical current sensors are suitable for operation in high voltage and high current environments such as power plants due to they are not affected by electromagnetic interference and have excellent insulation characteristics. However, as they operate in a harsh environment such as large temperature fluctuation and mechanical vibration, high reliability of the sensor is required. Therefore, many groups have been working on enhancing the reliability. In this work, an integrated optical current sensor incorporating polarization-rotated reflection interferometer is proposed. By integrating various optical components on a single chip, the sensor exhibits enhanced stability as well as the solution for low-cost optical sensors. Using this, we performed the characterization for the actual field application. By using a large power source, the current of 0.3 kA~36 kA was applied to the photosensor and the linear operation characteristics were observed. The error of the sensor was within $0{\pm}.5%$. Even when operating for a long time, the error range of the sensor was kept within $0{\pm}.5%$. In addition, the measurement of the frequency response over the range of 60 Hz to 10 kHz has confirmed that the 3-dB frequency band of the proposed OCT is well over 10 kHz.

Preparation of Humidity Sensor Using Novel Photocurable Sulfonated Polyimide Polyelectrolyte and their Properties (광가교성 Sulfonated Polyimide 전해질 고분자를 이용한 습도센서의 제조 및 특성 분석)

  • Lim, Dong-In;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.486-493
    • /
    • 2012
  • Photocurable sulfonated polyimide (SPI) polyelectrolyte containing chalcone group was prepared and fabricated on an alumina electrode pretreated with chalcone-containing silane-coupling agent. SPI films with bis(tetramethyl)ammonium 2,2'-benzidinedisulfonate ($Me_4N$-BDS)/4,4'-diaminochalcone (DAC)/pyromellitic dianhydride (PA)= 90/10/100 possessed very linear response(Y = -0.04528X+7.69446, $R^2=0.99675$) and showed resistance changing from 4.48 to $2.1k{\Omega}$ between 20 and 95 %RH. The response time for absorption and desorption measurements between 33 and 94 %RH% was about 79 s, which affirmed the high efficiency of crosslinked SPI film for rapid detection of humidity. A negative temperature coefficient showing $-0.49%RH/^{\circ}C$ was found and proper temperature compensation should be considered in future applications. Moreover, pretreatment of the substrates with chalcone-containing silane-coupling agent was performed to improve the water durability and the stability of the humidity sensors at a high humidity and a high temperature and long-term stability for 480 h. The crosslinked SPI films anchored to electrode substrate could be a promising material for the fabrication of efficient humidity sensors with superior characteristics compared to the commercially available sensors.