• Title/Summary/Keyword: 폴리머모르타르

Search Result 186, Processing Time 0.022 seconds

Study on Adhesive Strength of Polymer Modified Cement Mortar for Maintenance in Concrete Structure (콘크리트 구조물 보수용 폴리머시멘트 모르타르의 부착강도 특성에 관한 연구)

  • Park, Sang-Soon;Kim, Jung-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • Polymer-modified cement mortar(PCM) has been widely used for strengthening of the concrete structures due to its excellent physical properties such as high strength and durability. Adhesive strength or behavior, on the other hands, between PCM and concrete is very important in strengthening the concrete member using PCM. Therefore the adhesive failure mechanism between PCM and concrete should be fully verified and understood. This study was performed to evaluate adhesive strength of PCM to the concrete by the direct pull-out test. In the direct pull-out tests, the adhesive strength under the various pre-treatment conditions such as immersion, thunder shower, freezing and thawing are evaluated. Also, the field direct pull-out test are performed to investigate the adhesive strength of mock-up test specimens. In the results of the test, the adhesive strength value by field test are lower than those of the standard curing condition. From these comparison and investigation, field test result was similar with the thunder shower test result. The results of the test was used to evaluate the korean industrial standard of polymer modified cement mortars for maintenance in concrete.

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Drying Shrinkage and Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머시멘트모르타르의 건조수축 및 강도 특성)

  • Joo Myung-Ki;Lee Youn-Su;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.651-657
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tends to decrease nth increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tends to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the polymer-modified mortars using redispersible polymer powder tends to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the polymer-modified mortars using redispersible polymer powder decreases with increasing polymer-cement ratio and shrinkage-reducing agent content.

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

A Study on the Development of Polymer-Modified Mortars Using Styrene-Butyl Acrylate Latexes (St/BA의 모노머 비에 따른 폴리머 시멘트 모르타르 개발에 관한 연구)

  • Hyung, Won-Gil;Mun, Kyung-Ju;Song, Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.785-791
    • /
    • 2006
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars based on styrene and butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effects of monomer ratio on the typical properties of the polymer-modified mortars with styrene and butyl acrylate latexes. The polymer-modified mortars using the styrene and butyl acrylate latexes polymerized with various monomer ratios are prepared with different polymer-cement ratios, and tested for the particle size of polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer-modified mortars using styrene and butyl acrylate latexes with the mix proportions of synthesis having monomer ratios of 50:50 to 60:40 for the appropriate mix proportions can be recommended for practical applications. Their basic properties are greatly affected by the polymer-cement ratio rather than the monomer ratio, and are improved over un-modified mortar.

Evaluation of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance (내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가)

  • Won, Jong-Pil;Choi, Seok-Won;Park, Chan-Gi;Park, Hae-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.559-568
    • /
    • 2006
  • The purpose of this study is to evaluate the mechanical performance and fire resistance of wet-mixed high strength sprayed polymer-modified mortar in order to protect tunnel lining system which are in the event of fire disaster. Since the current commercial fire-resistant materials reproduce the low strength issue of mortar, this study aims to provide an enhanced fire-resistant mortar with a proper strength. Normally, a large temperature gradient phenomenon arise in the vicinity of free surfaces which are fully exposed in the event of persistent flame. Thereby, the determination of optimal cover depth of wet-mixed high strength sprayed polymer-mortar(WHSPM) is important for fire-resistance of tunnel lining system. With comparison of current commercial fire-resistance materials and WHSPM, the experimental result of WHSPM shows the better fire-resistant performance than the others. In addition, the cover limitation should be controlled by minimum 4cm depth in order to avoid fire-induced damage.

Evaluation of Fire Resistance Performance of Polymer Modified Cement Mortar Using Polypropylene Fiber (폴리프로필렌 섬유를 혼입한 폴리머 시멘트 모르타르의 내화성능 평가)

  • Jeon, Ki-Soo;Sim, Sang-Rak;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • In this study, the fire resistance capabilities of polypropylene fiber-reinforced polymer-modified cement mortar were assessed to guarantee the fire resistance fo this materials, commonly employed in the repair of concrete structures. Experimental outcomes revealed that an increased water and polymer content heightened the likelihood of spalling, while longer polypropylene fibers and elevated polymer concentrations proved more effective in mitigating spalling.

Properties of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (모노머비를 변화한 MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • Hyung, Won-Gil;Kim, Wan-Ki;Choi, Nak-Woon;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.273-279
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methylmethacrylate-butyl acrylate(MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, we knew that the pore volume of polymer-modified mortars using MMA/BA latexes at bound MMA contents of 60 and 70 percent is 7.5∼75nm and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content. The important factors affecting the properties of polymer-modified mortars using MMA/BA latexes polymerized with various monomer ratios are the variations of the pore size distribution with changing bound MMA content and the polymer-cement ratio.

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

Physical Properties of Polymer Mortar Recycling Waste Concrete Powder as a Filler (폐콘크리트 미분말을 충전재로 재활용한 폴리머 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Hwang, Taek-Sung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.317-322
    • /
    • 2005
  • Nowadays, recycling of aggregates from the waste concrete is in big demand due to the protection of environment and the shortage of aggregates that are needed for ever expanding construction projects. This study was undertaken to examine the feasibility of recycling waste concrete powder produced in the crushing process of demolished concrete as a filler material for polymer mortar. In this study, polymer mortar specimens were prepared by varying the mix proportion of polymer binder (ranging 9~15 wt%), waste concrete powder (ranging 0~20 wt%) substituted for silica powder, 0.1~0.3 mm fine aggregate (ranging 21~24 wt%) and 0.7~1.2 mm fine aggregate (ranging 44~47 wt%). For the prepared polymer mortar specimens, various physical properties such as strength, water absorption, heat water resistance, acid resistance, pore distribution and SEM observation were investigated in this work. As a result, physical properties of polymer mortar were observed to have remarkably improved with an increase of polymer binder, but greatly deteriorated with an increase of substitution quantity of waste concrete powder.