• Title/Summary/Keyword: 폴리머라텍스

Search Result 53, Processing Time 0.032 seconds

Physical Properies of Polymer Cement Mortar Using Ground FRP Wastes (분쇄된 FRP 폐기물을 사용한 폴리머 시멘트 모르타르의 물성)

  • 이병기;이범재;황의환;노재성
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.217-225
    • /
    • 1998
  • 분쇄한 FRP(Fiver-Reinforced Plastics) 폐기물을 사용한 폴리머 모르타르의 물성에 고나하여 조사하였다. 분쇄한 FRP 폐기물을 시멘트 모르타르의 세골재로 재활용하기 위하여 세골재에 대하여 0~50wt% 치환.사용하였고, FRP 폐기물의 사용으로 나타나는 강도 저하현상을 보완하기 위하여 3종류 폴리머 혼화제의 첨가량을 변화시켜 각종 공시체를 제작하였다. 폴리머 혼화제로서는 styrene-bytadiene rubber(SBR) 라텍스, polyacrylic ester(PAE) 에멀젼 및 ethylene-vinyl acetate(EVA)에멀젼을 사용하였다. 분쇄한 FRP 폐기물을 사용한 시멘트 모르타르에 폴리머 혼화제를 첨가하여 만든 폴리머 시멘트 모르타르는 폴리머 혼화제를 첨가하지 않은 모르타르보다 압축 및 휨강도가 크게 증가하였다. 폴리머 시멘트비 10wt%에서 세골재 대용으로 분쇄한 FRP 폐기물의 적정 치환량은 20wt%로 나타났다. 8$0^{\circ}C$에서 가열양생하여 제조한 폴리머 시멘트 모르타르는 폴리머 시멘트비 10wt%이하에서 표준양생한 모르타르보다 강도가 저하되었다. 폴리머 시멘트 포르타르의 흡수율은 폴리머 시멘트비가 증가함에 따라 크게 감소하였다.

Strength Development Properties of Latex Modified Concrete For New Concrete Bridge Deck Overlay (신설 콘크리트 교면 덧씌우기를 위한 라텍스 개질 콘크리트의 강도발현 특성)

  • Yun, Kyong-Ku;Kim, Ki-Heoun;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.135-146
    • /
    • 2001
  • This study focused on the investigation of compressive and flexural strengths development, and bond strength of latex modified concrete in order to validate the feasibility of application into concrete bridge deck overlay. Pull-out bond test was used for evaluating the bond strength of latex modified concrete to substrate. The main experimental variables were latex-cement ratio, surface preparation and moisture levels. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased as the latex content increased from 5% to 20%. This might be due to the flexibility latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Significant improvements in bond strength between new and existing concrete were achieved through the modification of the new concrete bridge deck overlay by latex polymers. The effect of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated condition of surface is the most appropriate moisture level among the considered followed by dry condition and wet condition.

  • PDF

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Physical Properties of Polymer Modified Mortar Containing FRP Wastes Fine Powder (폐FRP 미분말을 사용한 폴리머 시멘트 모르타르의 물성)

  • 황의환;한천구;최재진;이병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In this research the physical properties of polymer modified mortar containing pulverized FRP(Fiber-Reinforced Plastics) wastes fine powder as a part of fine aggregate were investigated. Styrene-butadiene rubber(SBR) latex, polyacrylic ester(PAE) emulsion and ethylene-vinyl acetate(EVA) emulsion were used as Polymer modifier. Polymer modified mortars containing FRP wastes fine powder were prepared with various FRP wastes fine powder replacement(5∼30 wt%) for fine aggregate and polymer-cement ratios(5∼20 wt%). The water-cement ratio, water absorption rates and hot water immersion test, compressive and flexural strengths of polymer modified mortars were tested and the results compared to those of ordinary portland cement mortar. As the results, compressive and flexural strengths of polymer modified mortar containing FRP wastes fine powder depend on the contents of FRP wastes fine powder, type and additional amounts of polymer modifier. Some of them showed higher compressive and flexural strengths than those of ordinary portland cement mortar. Especially, SBR-modified mortar showed the highest strengths properties among three types of polymer modifier. Also water absorption rates, compressive and flexural strengths of SBR-modified mortar were more superior than those of PAE or EVA-modified mortar. The optimum mix proportions of SBR-modified mortar was 20 wt% of polymer-cement ratio and 20 wt% of FRP wastes fine powder replacement. Otherwise heat cured polymer modified mortar accelerated the improvement of early compressive and flexural strengths.

Effect of Poly(vinyl alcohol) and Poly(vinyl alcohol) Mono Thiol on the Stability Properties of Poly(vinyl acetate) Latex (폴리비닐알코올과 폴리비닐알코올모노티올이 폴리초산비닐 라텍스의 안정성에 미치는 영향)

  • 이서용;박이순
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.579-588
    • /
    • 2000
  • The effects of protective colloids on the colloid stability of poly(vinyl acetate) (PVAc) latex was investigated. The stability of PVAc latex in reactive poly(vinyl alcohol) mono thiol (PVALT) (DP=1080) having 78.4% saponification value was better than poly (vinyl alcohol)(PVA) (DP=1100) having 81.6% saponification value. The colloidal stability of PVAc latex particles improved drastically with increase of the reactive PVALT. The particle surface morphology of PVAc latex was examined by transmission electron microscopy (TEM). It was shown that particle size of 1ha latexes decreased with increasing reactive PVALT concentration. Therefore, the stabilities of latex for reactive PVALT protective colloid was superior to that of PVA ones. This result is due to the introduction of many thiol groups that induce chemical bonds at PVAc latexes surface, so that the formation of PVALT-b-PVAc block copolymer via the reaction of PVAc with reactive PVALT. In addition, zeta potential of the PVAc latexes decreased with increasing sodium carbonate concentration.

  • PDF

Estimation of Air Void System and Permeability of Latex-Modified Concretes by Image Analysis Method (화상분석법을 이용한 라텍스개질 콘크리트의 공극 구조와 투수성의 상관성 분석)

  • Jeong Won-Kyong;Yun Kyong-Ku;Hong Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.695-702
    • /
    • 2005
  • It is known that latex-modified concretes were increased their durability and permeability by added latex. The purpose of this study was to analysis the air void systems in latex-modified concretes using a reasonable and objective image analysis method with main experimental variables such as water-cement ratios, latex contents(0%, 15%) and cement types(ordinary portland cement, high-early strength cement and very-early strength cement). The results are analyzed spacing factor, air volume after hardened, air distribution and structure. Also, air void systems and permeability of latex-modified concretes were compared with correlation. The results are as follows; The same w/c ratio LMC showed better air entraining effect than OPC with AE water reducer. The VES-LMC showed that the number of entrained air below $100{\mu}m$ increased more than four times. In the HES-LMC, micro entraining air having range from 50 to $500{\mu}m$ increased above 7 times without antifoamer. Though spacing factor was measured low, latex-modified concretes were showed that permeability was good. It is considered that air void system does not have an effect on the property of latex-modified concretes but latex film is more influenced in the their durability.

The Strength and Durability of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 강도와 내구성)

  • Hwang, Eui-Hwan;Hwang, Taek-Bung;Ohama, Yoshihiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.786-794
    • /
    • 1994
  • The strength and durability of polymer-cement mortars were investigated. The specimens of polymer-cement mortar were prepared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various polymer-cement ratios(5, 10, 15, 20wt%). For the evaluation of durability of polymer-cement mortars, freezing-thawing, acid resistance and heat resistance tests were conducted. With an increase of polymer-cement ratio, the frost resistance of polymer-cement mortars was greatly improved, but acid and heat resistance were deteriorated. The compressive and flexural strengths of SBR polymer-cement mortars were improved with an increase of polymer-cement ratio, whereas those of EVA and PAE polymer-cement mortars reached maximum value at polymer-cement ratio of 10wt%.

  • PDF

기능성 카본계 막의 개발과 수처리 응용에의 검토에 관한 연구

  • Bae, Sang-Dae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.431-434
    • /
    • 2006
  • 폴리머 라텍스의 탄화와 메탄-질소 혼합가스의 CVD법으로 Carbon whisker를 가진 활성탄막을 개발하였다. 이 막의 PMMA 현탁물질 여과실험과 실제의 현탁물질과 용존유기물을 함유한 오래된 수도관으로부터 얻어진 적수여과실험 결과, Carbon whisker의 유무가 fouling에 의한 막의 flux를 억제하는 것으로 밝혀져, 실제의 정수공정에의 응용 가능성을 보였다.

  • PDF

A Study on the Fundamental Properties of Cement Mortar Using Polymer Coated Crumb Rubber (폴리머 코팅 폐타이어 분말을 혼입한 시멘트 모르터의 기초적 성질)

  • Song, Hun;Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.163-172
    • /
    • 1996
  • Recently, the disposal of used vehicle tires is a big social problem because the amount of used vehicle tires has been increased with development of' automobile industry. Many researches have been made on the recycling of used vehicle tires in the various fields of industry as well as construction industry. When the crumb rubber made of vehicle tires is mixed in cement concrete and mortar, it is indicated that the adhesive strength of interface between the crumb rubber and cement hydrates is very low. The purpose of this study is to improve the fundamental properties by increasing of the adhesion strength of styrene-butadiene rubber(SF3R) latex coated crumb rubber in ; cement mortar. SBR-modified mortar using crumb rubber is also tested as the same method. From the test results, the cement mortar using SBR latex coated crumb rubber have a good fundamental properties compared with that using uncoated crumb rubber. The mechanical properties of SBR-modified mortar using crumb rubber with polymer-cement ratios of 10% are also improved.