• Title/Summary/Keyword: 폭기효율

Search Result 131, Processing Time 0.038 seconds

Analysis of Design Factors of an Aeration System in Field Condition of Dam Reservoir using CFD (CFD를 이용한 현장 댐조건에서의 산기식 수중폭기장치 설계인자 분석 연구)

  • Shin, Sang-Min;Lee, Seung-Jae;Kim, Sung-Hoon;Lee, Sang-Eun;Park, Hee-Kyung;Yum, Kyung-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.239-243
    • /
    • 2011
  • 우리나라 주요 수자원인 댐 저수지는 여름철 성층현상으로 인해 많은 수질문제가 발생하여 산기식 수중폭기장치를 설치하고 있다. 그러나 산기식 수중폭기장치의 설계인자들은 대부분 lab-scale의 실험연구를 통해 검토되고 설계에 반영되고 있어 실제 댐 저수지에 적용하기 위해서는 현장적용성을 고려하여 개선될 필요가 있다. 따라서 본 연구는 실제 댐 저수지의 현장조건을 고려하여 CFD 모의실험을 통해 산기식 수중폭기장치의 설계인자인 무차원변수 DN (Destratification Number)과 탈성층 영향반경 및 효율을 검토하였다. 그 결과 현장조건에서의 DN값은 lab-scale 실험조건보다 더 넓은 범위를 가지며, 단위수심당 탈성층 영향반경은 DN값이 증가할수록 감소하는 것으로 분석되었다. 또한 탈성층 효율은 DN값이 증가할수록 선형적으로 증가하다가 증가율이 감소하면서 일정해지는 것으로 분석되었다.

  • PDF

오염토양/대수층 복원을 위한 선택적 폭기 기술의 개발

  • Kim Heon-Gi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • 대수층 폭기법(aquifer air sparging)은 대수층에 가압공기를 주입하여 휘발성 유기오염물질을 제거하는 지반환경복원 기술의 하나이다. 본 연구는 전통적인 지하 대수층 폭기기술 시행에 있어서 특정층에 미리 수용액상 계면활성제를 수평방향으로 도입함으로써 오염물질이 실제로 존재하는 층에 선택적으로 폭기 되도록 하여 최소한의 공기량으로 제거 효율을 극대화 하는 기술을 개발하는 것을 목적으로 한다. 본 연구에서는 균일질 모래로 충진된 2차원 상자 모델을 사용하였으며, 표면장력 조절을 위하여 저농도(100mg/L) 음이온계 계면활성제(sodium dodecyl benzene sulfonate) 수용액이 사용되었다. 실험은 계면활성제가 처방되지 않은 경우, 공기도입부 근처에 계면활성제 용액이 도입된 경우, 공기도입부와 토양표면의 중간부분에 계면활성제 용액이 도입된 경우의 세 가지 방법으로 실시되었다. 실험 결과, 계면활성제가 도입된 경우는 투입되지 않은 경우에 비하여 최고 5배에 해당하는 폭기영향권의 확대가 관찰되었으며 폭기영향권이 계면활성제가 도입된 수평층을 중심으로 형성되어 이 부분에 집중되어 존재하는 오염물질의 제거에 매우 유리할 수 있다는 점이다. 대수층 도입공기의 수평확산을 유도하는 기술로 본 연구는 기존의 대수층 폭기 복원기술의 효율을 획기적으로 개선할 수 있을 것으로 기대된다.

  • PDF

Surfactant Aided Air-sparging for Groundwater Remediation (계면촬성제 첨가에 따른 지하수 폭기법의 폭기효율 변화 연구)

  • 소효은;최경민;이승재;김헌기
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 2002
  • Lab-scale experiments were conducted to evaluate the effect of surface tension reduction on the extension of the influence zone and the VOC removal efficiency of ground water sparging. A glass column packed with coarse sand was used for VOC removal test at two different surface tensions. A glass column without porous media was also used fer control purpose prior to sand-packed column test. A quasi-two-dimensional glass box model, packed with a sand, was used fer sparging zone tests at different water surface tensions. Surface tension of the aquoues solution used in this study was controlled using sodium dodecyl sulfate (SDS). For the glass, sand column experiments, total amount of air filled in the media increased as surface tension decreased. Toluene (used as VOC in this study) removal rate increased slightly with decreased surface tension f3r both free water column and sand-packed column. Air sparging zone extended up to 500% as the surface tension decreased. Combining the results from two different experiments, VOC removal efficiency is expected to increase significantly with surface tension reduction.

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

A Study on the Labyrinth Weir for Improvement of Reaeration (재폭기 효율 증가를 위한 래버린스 보에 관한 연구)

  • Yu, Dae-Young;Kim, Sung-Tae;Woo, Hyo-seop
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.511-523
    • /
    • 2002
  • In order to develop the weir with high reaeration efficiency, the reaeration experiments at linear weir, ogee spillway type weir, and labyrinth weirs were conducted and the results were compared. The effect of roughened crest was also analyzed. It was found from the experiments that the oxygen transfer efficiency at the ogee spillway type weir was the lowest and that at the linear weir was second lowest among the weirs used in the experiments. It was also revealed that the reaeration efficiencies of the labyrinth weirs increase as the included angles become smaller. The roughened crest which causes the disintegration of overflow was found to increase the reaeration efficiency significantly. On the basis of the results of the experiments, the pilot construction of the labyrinth welt with included angle of 30 degree was made. The labyrinth weir was made up by assembling the frame and then filling the ripraps into the frame. The ripraps were exposed at the crest to split the overflow. The average value of oxygen transfer efficiency observed at the pilot weir was 0.18. It is expected that the results from the experimental study and the field data of the pilot weir would serve for the improvement of water quality by the weirs with high reaeration efficiency.

Effect of Aeration Mechanism on Livestock Manure Liquid Fertilization (폭기형태가 돈분뇨 액비 부숙특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Kim, Chang-Hyun;Lee, Dong-Hyun;Choi, Dong-Yoon;Yu, Yong-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • Three types of aeration system were installed in experimental liquid fertilization tanks to investigate the change of characteristics of pig slurry used as a raw material for making livestock liquid fertilizer. The aeration systems of the reaction tanks were composed of three major part: the air suppling part (blower), the air pipe part, and the air diffuser part. In the first tank (reactor A), the air was supplied from the bottom of the reaction tank through air pipe system connecting air diffuser with commercial ordinary blower. In the second tank (reactor B), the air diffuser was located 10cm above the bottom of the reactor. In the third tank (reactor C), the pure air was supplied with circulating pjg slurry. The oxygen content of pure air was about 90%. The pure air was mixed with pig slurry by mechanically in the air suppling part (blower) and the air pipe part. The agitation effect was highest in the reactor C than other reactors. The contents of SS, COD, T-N and T-P of each samples collected at middle part of all reactors were 8,500, 4,188, 694 and 422mg/L; 9,000, 4,247, 813 and 356mg/L; 8,667, 6,910, 973 and 269mg/L, respectively.

Evaluation of Biological Organic and Nutrient Removal Performance in Intermittent MBR Systems by Computer Simulation (컴퓨터 시뮬레이션을 이용한 간헐폭기 MBR시스템에서의 유기물 및 영양염류 처리 성능 평가)

  • Yoo, Hosik;Rhee, Seung-Whee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.82-92
    • /
    • 2013
  • The Intermittent Aeration MBR systems have the advantage of controlling reaction time by changing aeration period and are one of economic BNR systems since these processes do not require MLSS recirculation that demands capital and operation costs. In this study, two intermittent aeration MBR systems were studied by computer simulation: an intermittent aeration MBR system that had both 1hr/1hr and 4hr/4hr aeration/unaeration periods at intermittent reactor and NEW INTERMITTENT-process that was an energy saving process and certified as a new process by Korean government. Since DO concentration reached only at 0.23mg/L at intermittent reactor when it was aerated, the Intermittent aeration MBR system having 1hr/1hr aeration/unaeration period showed simultaneous nitrification/denitrification and had the highest nitrogen and phosphorus removal efficiencies that were 57% and 55%, respectively. Since this study was based on the constant influent flow and characteristics, more studies are needed to define the operational characteristics of intermittent aeration MBR systems under dynamic influent conditions.

Air-sparging Technology for Remediation of Specific Aquifer Layer Using Surfactant (계면활성제를 이용한 오염대수층의 선택적 폭기기술)

  • Kim, Heon-Ki;Song, Young-Su;Kwon, Han-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • Air sparging technique has been used for remediation of VOC(volatile organic compound)-contaminated aquifer. The aim of this study was to develop an innovative air sparging technique that enhances the efficiency of air intrusion into a specific horizontal layer of aquifer where the contaminants exist with the help of water-soluble surfactant. A twodimensional physical box model, packed with homogeneous sand, was used for simulating the aquifer in this study. Aqueous solution of anionic surfactant (100 mg/L, sodium dodecylbenzene sulfonate) was used to suppress the surface tension of groundwater. Three sets of experiments were conducted: air sparging experiment without surfactant application, air sparging experiments for box model where the surfactant solution was applied right above the air injection point, and air sparging experiments with surfactant solution layer formed in the middle of the box. It was found that the sparging influence zone was expanded up to five times of that formed by sparging without surfactant application. The size of sparging influence zone was more sensitive to the air flow (injection) rate with surfactant application than that without surfactant. More importantly, injection of air into the target aquifer layer was successful with surfactant application. Findings in this study are expected to provide more options for designing remediation processes using air sparging.

Study on the Standard Oxygen Transfer Efficiency Monitoring System in the Aeration Tank for Reuse and Discharge of Wastewater (하폐수의 재사용 및 방류를 위한 폭기조 내 표준산소전달 효율 모니터링 시스템에 관한 연구)

  • Kim, Hong-Seok;Kim, Yong-Beom;Ko, Kyung-Han;Kim, Sang-Woo;Shim, Hwan-bo
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2019
  • In this investigation, off-gas generated from the activated sludge in wastewater treatment plant was monitored. Through monitoring, the oxygen transfer efficiency in the aeration system and the reliability was evaluated by comparing to clean water. First, the dissolved oxygen, oxygen transfer coefficient, and standard oxygen transfer efficiency were measured based on clean water, and the values were 8.60 mg/L, 9.490/hr and 23.96%, respectively. The off-gas monitoring at the wastewater treatment plant indicated that the standard oxygen transfer efficiency was 22.81%. Little difference in oxygen transfer efficiency this data inferred that the performance was improved through diffuser installation in the field monitoring system.