• 제목/요약/키워드: 폭굉압

검색결과 6건 처리시간 0.021초

PFC2D에서의 발파에 의한 파괴 메커니즘의 수치적 모델링 (Numerical Simulation of Fracture Mechanism by Blasting using PFC2D)

  • 정용훈;이정인;전석원
    • 터널과지하공간
    • /
    • 제16권6호
    • /
    • pp.476-485
    • /
    • 2006
  • 발파에 의한 암반의 손상이나 파쇄는 폭약의 폭굉 과정에서 발생하는 충격파와 가스팽창의 영향에 의해 야기된다. 발파에 의한 파괴 메커니즘을 완전히 이해하기 위해서는 두 메커니즘을 같이 연구해야한다. 본 연구에서는 개별 요소법에 기초한 수치해석 프로그램인 PFC2D를 이용하여 발파공 벽면에 작용하는 폭굉압과 가스압을 동시에 모델링 할 수 있고 이에 따른 암반 내 균열 발생을 확인할 수 있는 알고리즘을 개발하였다. 또한 시멘트-모르타르 블록에서의 모형 발파시험을 수치해석을 수행함으로써, 개발된 알고리즘을 검증하였다.

단일공 발파에서 생성된 균열망에 작용하는 가스압의 수치해석적 산정 (Numerical Simulation of Gas Flow within a Radial Fracture Created by Single-Hole Blasting)

  • 정용훈;이정인
    • 터널과지하공간
    • /
    • 제16권5호
    • /
    • pp.413-421
    • /
    • 2006
  • 발파에 의한 암반의 동적 파괴 과정을 설명하기 위해서는 발생한 폭굉압과 가스압의 작용을 동시에 연구해야 한다. 발파 과정에서 폭굉압과 가스압의 발파공 벽면에의 작용을 동시에 모델화하여 이에 따른 암반과의 상호 작용을 수치해석하는 연구에 앞서, 본 연구에서는 단일 발파공에서 생성된 단일 균열망에서의 가스 유동에 미치는 가스압 이력, 균열 길이 그리고 가스압을 산정하기 위해 적용한 상태 방정식의 영향에 대해 분석 하였다. 이를 위하여 단일공 발파에 의해 길이 0.01 m, 간극 0.001 m으로 동일한 5개의 균열로 구성된 단일 균열망이 생성되었다고 가정하였다. 또한 지름이 45 mm인 발파공에 지름이 36 mm인 PEIN을 장약하였다고 가정하여 수치해석을 수행하였다. 그 결과, 균열망을 구성하는 개별 균열에 작용하는 최대 가스압력과 그 도달시간은 사용 폭약의 특성과 균열망의 기하학적 특성에 의해 결정되는 것으로 나타났다.

고성능폭약의 성능에 영향을 미치는 요소들의 이론적 계산 (Theoretical calculation of the parameters influencing on the performance of high explosives)

  • 권상기
    • 터널과지하공간
    • /
    • 제10권2호
    • /
    • pp.218-226
    • /
    • 2000
  • 고성능 폭약의 성능을 결정하기 위해서는 폭발압력, 폭발속도, 열, 발생되는 가스 등이 정확히 기술될 수 있어야 한다. 본 연구에서는 실측하는데 어려움이 따르는 폭굉 시의 현상을 이해하기 위해 폭약이 폭발할 때 발생하는 압력, 부피팽창, 온도, 폭발속도 등을 이론적으로 계산하고자 하였다. 본 연구를 통해 폭발 현상을 표현하기 위한 계산 프로그램이 개발되었으며 이 프로그램을 이용하여 ANFO와 NG에 대해 폭약성능에 영향을 미치는 요소들을 이론적으로 계산하였다.

  • PDF

터널 굴착 발파하중 시간이력 생성 (Generation of blast load time series under tunnelling)

  • 안재광;박두희;신영완;박인준
    • 한국터널지하공간학회 논문집
    • /
    • 제16권1호
    • /
    • pp.51-61
    • /
    • 2014
  • 발파가 인근 시설물에 미치는 영향을 수치적으로 규명하기 위해서는 발파하중 시간이력을 적용한 동적 해석을 수행해야 한다. 발파하중은 실측하기 어렵기에 다양한 참고문헌에서 제시된 경험적 시간이력이 일반적으로 사용된다. 경험적 폭굉압과 시간이력은 다양한 환경변수를 고려하여 보정해야 하지만 이에 대한 가이드라인이 명확하게 제시되지 않아 해석에 어려움이 있다. 본 연구에서는 시험발파를 모사하는 2차원 동적 수치해석을 수행하여 계측기록과 상응하는 경험적 발파하중 시간이력을 도출하였다. 발파로 인한 파쇄영역은 원형으로 가정하여 모델링 하였으며 발파하중을 경계벽에 수직방향으로 재하하였다. 특히, 해석 결과에 지반의 감쇠비는 큰 영향을 미칠 수 있으므로 이를 정확하게 산정해야 한다. 시험적으로 계산된 감쇠식의 기울기는 발파하중의 크기에는 영향을 받지 않으며 하중의 주파수와 지반의 감쇠비에 의해서만 결정되므로 지반 감쇠비는 발파 감쇠식에 상응하도록 결정하였다. 해석 결과, 발파하중은 암반의 파쇄에 소요되는 에너지 손실을 고려하지 않으므로 이를 보정없이 적용할 경우 발파로 인하여 유발되는 진동을 크게 과대예측하므로 이를 감소시켜야 하는 것으로 나타났다.

벌크 에멀젼 블랜드 폭약의 특성 고찰 (The Study of Bulk Emulsion Blends Consisting of Emulsion and ANFO)

  • 정천채
    • 화약ㆍ발파
    • /
    • 제18권3호
    • /
    • pp.15-28
    • /
    • 2000
  • 국내에서는 Heavy ANFO로 더 잘 알려져 있는 Emulsion Blends는 왁스 대신 오일을 사용 하여 상온에서 펌핑이 가능하도록 한 에멀젼과 ANFO(또는 초안)의 혼합물을 일컫는다. ANFO는 저렴하고 안전하며 장약이 쉽고 밀장전되는 장점이 있지만, 내수성이 거의 없고 폭발 속도가 느리며 장약 비중이 0.75∼0.90g/cc 정도로 낮아 폭약으로서 그 위력이 작은 단점을 갖고 있다. Blends는 수용성 ANFO 입자 사이의 빈 공간을 내수성 에멀젼이 태우고 있는 형태로서 에멀젼 함량 25%부터 내수성이 나타나기 시작하여 에멀젼 함량 40% 이상에서는 완전한 내수성을 갖게 되며, 에멀젼의 함량이 증가할수록 폭발속도는 카트리지 에멀젼 폭약에 근접하게 된다. 장약 비중은 에멀젼의 함량이 증가하여 45% 근처에서 1.25∼ 1.30g/cc의 최대 값을 갖지만, 그 이상의 에멀젼 함량에서는 기폭 감도 저하로 예감제를 사용하여 비중을 감소시키는 것이 바람직하다. Blends는 자체에 물을 함유하고 있으므로 열역학적으로 계산된 단위 중량당 반응열은 ANFO에 비해 매우 적지만, 폭발속도, detonation pressure(폭굉압), borehole pressure(폭발압력) 등이 ANFO에 비해 크므로 폭발압력에서부터 암석의 파괴가 가능한 압력가지의 단위 중량당 유효한 에너지의 양은 암석의 강도가 커질수록 ANFO에 비해 매우 적지만, 폭발속도, ANFO와 비슷해진다. 따라서 장약 비중이 ANFO의 130∼145%로 높은 Blends는 동일한 천공에 더 많이 장약할 수 있어 단위 천공당 암석 파괴에 이용되는 유효 에너지의 총 양이 커지게 되므로, 공간격과 저항선을 늘릴 수 있어 총 천공수를 감소시킬 수 있다. 결론적으로, Blends의 장점은 내수성과 함께 비장약량은 비슷하거나 약간 증가하는데 비해, 천공수는 크게 감소하여 전체적으로는 발파 현장의 경제성이 향상된다는데 있다.

  • PDF

가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰 (A Review of TNT Equivalent Method for Evaluating Explosion Energy due to Gas Explosion)

  • 권상기;박정찬
    • 화약ㆍ발파
    • /
    • 제33권3호
    • /
    • pp.1-13
    • /
    • 2015
  • 국내외에서 가스폭발 사고가 빈번하게 발생하고 있으며 가스 폭발의 평가와 분석을 위해 TNT 등가량 산정법이 사용되고 있다. 본 연구에서는 TNT 폭발 시 화학반응식의 선택과 반응 생성 물질들의 엔탈피의 선택에 따른 폭발에너지, 폭발압력, 폭굉속도 및 온도의 차이를 계산하였다. 화학반응식의 선택에 따라 계산되는 폭굉압은 최고값이 최저값에 비해 2배까지 나타났다. 밀폐된 공간에서의 메탄가스 폭발을 가정하고 TNT 등가량을 산정하였으며 이를 통해 폭발지점에서의 거리에 따른 최대압력과 임펄스 변화를 추정할 수 있었다.