• Title/Summary/Keyword: 포토닉 밴드갭 광섬유

Search Result 3, Processing Time 0.017 seconds

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

Low Loss Fusion Splicing of Photonic Crystal Fiber and Single-Mode Fiber (광자결정 광섬유와 단일모드 광섬유 저손실 융착접속)

  • Ahn, Jin-Soo;Park, Kwang-No;Kim, Gil-Hwan;Lee, Sang-Bae;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.15-21
    • /
    • 2009
  • We proposed a fusion splicing method for low splicing loss between a single-mode fiber(SMF) and two different photonic crystal fibers(PCFs) such as a photonic bandgap fiber(PBGF) and highly nonlinear photonic crystal fiber(NL-PCF). The splicing loss between the SMF and PBGF is affected by air-hole collapse. Therefore, we optimized fusion splicer and reduced a splicing loss below 1.22 dB. We also inserted a Intra High Numerical Aperture(UHNA) fiber between the SMF and NL-PCF to achieve a splicing loss of below 2.59 dB.

Fiber Interferometers Based on Low Loss Fusion Splicing of Photonic Crystal Fibers (저손실 융착접속을 이용한 광자결정 광섬유 간섭계)

  • Ahn, Jin-Soo;Kim, Gil-Hwan;Lee, Kwan-Il;Lee, Kyung-Shik;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.200-205
    • /
    • 2010
  • We report temperature and strain sensing characteristics of two kinds of in-line fiber interferometers. One interferometer consists of a section of Hollow Optical Fiber(HOF) spliced between two Photonic Bandgap Fibers(PBGF) and the other is built by splicing a section of HOF between two Large Mode Area-Photonic Crystal Fibers(LMA-PCF). To minimize the splice losses, we carefully optimized the heating time and arc current of the splicer so as not to collapse the air holes of the fiber. It is found that the first interferometer has a temperature sensitivity of 15.4 pm/$^{\circ}C$ and a strain sensitivity of 0.24 pm/${\mu}\varepsilon$. The other interferometer exhibits a temperature sensitivity of 17.4 pm/$^{\circ}C$ and a strain sensitivity of 0.2 pm/${\mu}\varepsilon$.