• Title/Summary/Keyword: 포텐셜 필드, 라우팅

Search Result 2, Processing Time 0.016 seconds

Implementation of Potential Field-Based Routing for Wireless Mesh Networks and its Performance Evaluation in Real-World Testbed (무선 메쉬 네트워크를 위한 포텐셜 필드 기반 라우팅의 구현과 실환경 테스트베드에서의 성능 평가)

  • Jihoon Sung;Yeunwoong Kyung
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2024
  • In response to the increasing demand for unrestricted access to diverse services regardless of location, cost-effective and easily deployable Wireless Mesh Network (WMN) solutions have once again captured attention. This paper primarily addresses the implementation challenges of Autonomous Load-balancing Field-based Anycast routing+ (ALFA+) for three-dimensional (3D) WMNs. Subsequently, we evaluate the performance of ALFA+ in an 802.11-based 3D WMN testbed established within a university campus using commercial devices, thus validating the practical viability of ALFA+. While most prior research has relied on performance evaluation through virtual environment simulations, this study distinguishes itself by performance evaluations in a real-world testbed using commercial devices and providing detailed implementation-related information necessary for such evaluations. This approach holds considerable significance in assessing the actual applicability of ALFA+.

Potential-Field-Based Anycast Routing in Large-Scale Wireless Mesh Networks : A Distributed Algorithm based on Finite Difference Method (광역 무선 메쉬 네트워크에서 포텐셜 필드 기반 애니캐스트 라우팅 : 유한 차분법 응용 분산 알고리즘)

  • Jung, Sang-Su;Kserawi, Malaz;Rhee, June-Koo Kevin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.683-687
    • /
    • 2010
  • In this paper, we propose an anycast routing scheme for large-scale wireless mesh networks, which requires only one-hop local information with no flooding overhead. We develop an analytical model for anycast mesh networks based on an electrostatic theory. A finite difference method contributes to achieving gateway load balancing with constant control overheads. We verify the performance of the proposed scheme by simulations.