• Title/Summary/Keyword: 포장파손속도

Search Result 10, Processing Time 0.02 seconds

Stochastic Disaggregation and Aggregation of Localized Uncertainty in Pavement Deterioration Process (포장파손과정의 지역적 불확실성에 대한 확률적 분해와 조합)

  • Han, Daeseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1651-1664
    • /
    • 2013
  • Precise analysis on deterioration processes of road pavements is not so simple matter due to severe uncertainty originated from a lot of explanatory variables engaged in. For those reasons, most analytical models for pavement deterioration prediction have often preferred to probabilistic approaches than deterministic models. However, the general probabilistic approaches that treat overall characteristics of population or entire sample would not be suitable for providing detail or localized information on their changing process. Considering the aspects, this paper aimed to suggest a stochastic disaggregation method to analyze the localized deterioration speeds and its variances changed by time and condition states. In addition, life expectancies and their uncertainty were estimated by probabilistic algorithm using the disaggregated stochastic process. For an empirical study, pavement inspection data (crack) accumulated from 2003 to 2010 from Korean national highway network was applied. This study can contribute to securing reliability of life cycle cost analysis, which is one of the primary analyses in road asset management, with much advanced deterioration forecasting functions. In addition, it would be meaningful trials as fundamental research for preventive maintenance strategy that demands essential understanding on changing process of the deterioration speed of pavement.

Effect of Surface Profiles on Pavement Fatigue Life (포장 프로파일이 포장 피로수명에 미치는 영향 분석)

  • Park, Dae-Wook;An, Deok-Soon;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.167-174
    • /
    • 2009
  • The simulation of dynamic load was conducted based on surface profile on asphalt concrete pavement, vehicle speeds, and suspension types using a truck simulation program. The results of the simulated dynamic load based on different surface profile, vehicle speeds, and suspension types are analyzed. As pavement roughness and vehicle speed are increased, the dynamic load was increased. Walking beam suspension produces greater dynamic load than air spring suspension. Pavement damage index is calculated based on covariance of dynamic load and Paris-Erdogan fracture parameter, n which is based on creep compliance tests of asphalt mixtures used in Korea. The higher covariance of dynamic load, confidence level, and fracture parameter are used, the greater pavement damage index is obtained. Specification of pavement roughness can be developed in various vehicle speeds and asphalt mixtures, and pay factor can be determined after constructing asphalt concrete pavement using pavement damage concepts.

  • PDF

Estimation of Life Expectancy and Budget Demands based on Maintenance Strategy (도로포장 유지보수 전략에 따른 기대수명과 보수비용산정)

  • Han, Dae-Seok;Do, Myung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.345-356
    • /
    • 2012
  • Road pavement requires repetitive maintenance works to maintain satisfactory service level to the public. However, the repetitive maintenance works upon deteriorated pavement structure make negative effects to deterioration speed. It often leads to inefficient use of limited budget. For that reason, the pavements require reconstruction work to recover their original performance. Recently, construction demands in the Korean national highway have already been reached to maximum level, and the aged pavements start to demand much more reconstruction works. However, in the real world, road agencies have often been confused when they determine maintenance design for such aged road sections due to budget constraint. It is because there is no reliable long-term maintenance strategy that supports their decision making. To support their decision making, this paper aimed to suggest the best maintenance strategy considering changing process of pavement performance by repetitive maintenance works. As an analysis method, probability distribution and hazard function to estimate the life expectancy were adopted, and then the results were used for long-term life cycle cost analysis with deterministic or Monte-Carlo method under various scenarios. As an empirical study, the Korean national highway data that has long-maintenance history data since 1986 has been applied. Last, this paper considered quality assurance of maintenance work to improve maintenance quality. These could be important information as a part of long-term maintenance strategy of pavement.

Development of Fatigue Model of Concrete Pavement Considering Environmental Loading (환경하중을 고려한 콘크리트 포장 피로모형의 개발)

  • Lim, Jin Sun;Kim, Yeon Bok;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.819-829
    • /
    • 2008
  • Fatigue cracking occurs over long time period because dynamic strength of slab continuously decreases by vehicle loading repetitively applied to the concrete pavement. To more accurately predict the fatigue life of the concrete pavement, the stress due to environmental loading should be considered prior to calculating the stress due to the vehicle loading because the stress due to temperature and moisture distribution always exists within the slab. Accordingly, a new fatigue model considering the environmental loading was developed in this research by evaluating factors of existing fatigue models most widely used and by making data points from the models. The applicability of the new model was evaluated by performing a fatigue analysis on the general concrete pavement structure using local climatic and traffic conditions in Korea. It was concluded that the top-down cracking due to the tensile stress at top of the slab is dominant cause of the fatigue failure than the bottom-up cracking occurred at bottom of the slab. More advanced fatigue analysis considering vehicle speed is expected by developing this study.

Investigation of the Strain Rate Effects of EPS Foam (EPS Foam의 변형률속도효과에 대한 연구)

  • Kang, Woo-Jong;Cheon, Seoung-Sik;Lee, In-Hyeok;Choi, Seon-Ung;Min, Je-Hong;Lee, Sang-Hyeok;Bae, Bong-Kook
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.64-68
    • /
    • 2010
  • Expanded polystyrene(EPS) foams are often used in packaging to protect electrical appliances from impact loads. The energy absorbing performances of the EPS foams depend on several parameters such as density, microstructure and strain rate. Thus, the effects of the parameters on the strength of the EPS foams need to be investigated for an optimized packaging design by FEM. In this study, various EPS foams which have different densities were quasi-statically and dynamically loaded in order to obtain the stress-strain curves. EPS foams of various densities from 18.5 to 37.0kg/m3 were considered in the experiments. A drop-mass type apparatus was developed for the intermediate strain rate tests up to several hundreds/second. It was found from the experimental results that the strength of the EPS foams increase about 170% as the strain rate increases from 0.06/s to 60/s. Experimental results also showed that the strain rate sensitivity increases as the strain increases.

A Study on the Relation between IRI and PrI (평탄성 지수 IRI와 PrI의 상관관계에 관한 연구)

  • Kim, Kook-Han;Lee, Byung-Duck;Choi, Go-Il;Yang, Sung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.11-18
    • /
    • 2003
  • Road roughness, as the key factor influencing not only drivers' ride quality and safety but also pavement deterioration, is one of the most important pavement performance indicator to be evaluated by users' subjective assessment. For this reason, a specific number of the pavement roughness has been adopted to monitor the condition of a road for pavement management systems and to evaluate the quality of newly constructed sections, however, none of the unified methodology was internationally accepted. In Korea highway network, road roughness has been used mainly to evaluate newly placed pavement by using 7.6m CP (California Profile meter) to calculate PrI (Profile Index). But this instrument is manually operated to measure road profiles by traffic closure and their interpretation depends on personal bias. Therefore, problems arisen from the manually operated instrument will be overcome by using the APL (Longitudinal Profile Analyzer) which can be operated in the speed of 80km per hour. A study was conducted to correlate the relation from both concrete and asphalt pavement between IRI (measured by APL) and PrI (measured by 7.6m CP). Test results showed that there was a good correlation between IRI and PrI.

  • PDF

Measurement of Crack Width of Pavements Using Image Processing (이미지프로세싱을 이용한 도로포장의 균열폭 측정에 관한 연구)

  • Ko, Ji-Hoon;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.33-42
    • /
    • 2002
  • The cracks in the pavements result from drying shrinkage, temperature change, repeated traffic loadings and so on. The reduction of soil support, spatting and many local failures are caused by water and incompressible foreign materials infiltrated into the cracks. In order to reduce this kind of problems the crack width must be controlled and managed by the accurate measurement. The current method is a visual survey using a microscope, which requires traffic blocking. The purpose of this study is to find the best condition to measure accurate crack width using automated pavement condition survey equipment running at the similar speed as other vehicles. In this study pavement surfaces are filmed on an enlarged scale by the camera with a zoom lens, and then the proper focal distance is determined according to the crack width through a pilot survey. The conditions for measurement of the accurate crack width using the image processing technique are suggested by comparing crack widths surveyed using a microscope in the field with those computed by various factors in the image processing program, STADI-2. In conclusion, the camera with a focal distance of 75m could detect crack range of 0.5mm$\sim$1.2mm In width with an accuracy of 80% for CRCP. The camera with a focal distance of 12.5mm could detect crack range of 1.8mm$\sim$3.3mm in width with an accuracy of 90% for asphalt pavement.

  • PDF

Machine Vision based Quality Management System for Tele-operated Concrete Surface Grinding Machine (원격조종 콘크리트 표면절삭 장비를 위한 머신비전 기반 품질관리 시스템)

  • Kim, Jeonghwan;Phi, Seung Woo;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1683-1691
    • /
    • 2013
  • Concrete surface grinding is frequently used for flatness of concrete surface, concrete pavement rehabilitation, and adhesiveness in pavement construction. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding highly depend on the skills of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. Also, The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the integrated program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

An Effectiveness Analysis of Commercial Vehicle's Loading Pattern and Prevention of Overloading with On-board Truck Weight Sensors (화물차량 부착 중량센서 적용을 통한 운행패턴 및 과적 예방 효과 분석)

  • Kim, Jong Woo;Jho, Youn Beom;Jung, Young Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.153-172
    • /
    • 2018
  • Overloading of Commercial vehicles have been an important area of transportation as one of the main causes of pavement damage, bridge collapse, severe traffic accident, etc. In this study, we analyzed the effects of overweight prevention by analyzing overweight driving patterns and using weight sensors. First, we analyzed relevant literatures of overweight and surveyed the commercial weight sensors. Then we chose the typical type of overweight vehicles based of overweight enforcement data analysis. MEMs inclinometer weight sensor were installed to 10 test vehicles and data was collected by weight sensors and gps in real time. As a result of gross vehicle weight and axle weight analysis, it was found weight sensor could decrease overweight rate. However, since the number of samples of test vehicles is insufficient to represent the whole commercial vehicle, further studies are deemed possible through the extension test.

Development of a Vehicle Classification Algorithm Using an Micro-Cell Detector on a Freeway (자석식 검지기를 이용한 차종인식 알고리즘 개발)

  • 김수희;조형기;이철기;오영태
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.149-149
    • /
    • 1998
  • 차종구분의 필요성은 교통공학 및 계획분야에서 교통패턴을 파악할 필요가 있으며 도로의 포장설계와 같은 구조적 측면, 교통관련자료구축 등에서도 중요하다. 현재 국내에서 운영중에 있는 각종검지기 체계들은 외국에서 개발한 체계로서 여러 가지 다양한 센서를 복합구성하여 차종을 구분하는 고가의 장비들이다. 이에 대한 국내의 연구사례는 극히 드물다고 볼 수 있다. 지금까지 주를 이룬 국내 연구사례를 보면 루프검지기를 이용한 차종구분이 주를 이루고 있다. 현재 루프검지기의 대체검지기(영상검지기, 자석검지기)개발이 활발히 진행되고 있으며 본 연구에서 이용되는 검지기는 자석검지기로서 루프검지기에 비하여 설치가 간단하고 파손의 우려가 적으며 유지관리 및 보수가 손쉽고 비용면에서도 저렴하다는 것이 장점이라 하겠다. 이에 최근에 개발되어진 단일 자석검지기를 이용한 실시간 차종인식 알고리즘을 개발하고, 현장실험을 통한 현장 적용성을 검토한다. 고속도로에 설치되어 있는 자석검지기를 이용하여 자료를 수집하며 분석에 이용되는 자료는 개별차량에 대하여 자속밀도의 변화를 주파수값으로 변환한 Digital Data값이다. 그 수치를 토대로 각 차량의 점유시간을 파악하여 각 차량의 점유시간동안 파형의 특징을 추출하여 각 특징들을 기초로 하여 각 차량이 나타내는 고유의 파형을 식별하는 패턴인식 방법으로 접근한다. 본 연구에서는 검지기 매설장소의 유한성 및 연구대상 도로의 특성으로 인하여 다양한 차종의 자료수집이 용이하지 못하여 시험가능한 자료수가 많은 차종을 대상으로 분석한다. 차종인식 알고리즘상의 차종분류는 건설교통부 차종분류기준에 따라 우선 구분이 확실한 차종으로 나눈후 단계적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의 교차로 통행을 고려하는 performance function의 경우 비신호 교차로와 신호교차로에 대

  • PDF